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4.3. Interpolation to Aircraft Position vs. Nearest Value

There are two approaches used to compute the modeled wind vector that Js matched to each air-

craft observation once a wind field is matched to the aircraft time. The simplest approach is to take

the wind vector at the Terminal Winds grid point nearest the aircraft. In this approach the RUC wind

field is interpolated to the TW grid using bi-linear interpolation so that both wind fields are on the

same grid. A more sophisticated approach uses bi-linear interpolation in 3-D on the surrounding

eight grid points to interpolate the winds to the aircraft position. The value of the extra complexity

was not known. Table 7 shows the results on the entire year database. The benefit to TW is about

a third of a m/s for the RMS vector error and slightly less for RUC, and the benefit is greater for the

larger percentile errors. Given the substantial benefit relative to the modest increase in complexity

of the second approach, the 3-D interpolation is justified for use in CTAS. For this report, only re-

sults using the 3-D interpolation are given, except in Table 7.

Table 7.

Comparison of Results Using Interpolation of Wind

to Aircraft Position vs. Using Nearest Wind Value

Results are for 1,228,588 aircraft reports. Values are in m/s.

vadable mean+l-std RMSE 50% 75% 90% _t_%

TW vector error
nearest 4.53+3.21 5.55 3.82 5.91 8.47 10.44
interpolated 4.26+2.95 5.18 3.64 5.54 7.85 9.61

RUC vector error
nearest 5.85+3.76 6.96 5.14 7.62 10.52 12.73
interpolated 5.67+3.64 6.74 4.99 7.38 10,18 12.31

4.4. Performance Results Over All Reports

A number of statistics arc computed over the entire year. These results provide information on

thesortsoferrorsencounteredby theaircraft.Since theaircraftarcnot uniformlydistributedinspace

and time,theseresultsarenot necessarilyan accurateorfullaccountofthequalityofthewind fields.

Since a goalofthisstudyistodetermine theaccuracy ofthewind fieldsrelativetoCTAS, itisimpor-

tantto stu:lythe errorsencountered as opposed to studying the fieldsin general.For example, the

resultsaredominated by the aircraftatcruisealtitudes,exceptfor theresultsbroken down by alti-

tude.There are alsomore aircraftafterMay due toUnited Airlinesturningon many of theiraircraft

in ordertoprovide more numerous dataon ascentand descent.

The resultsfor the entireyear areprovided in Table 8.Over 1.2millionMDCRS are used on

343 days.Since thestatisticsarcfor(MDCRS - Model), anegativevalueforu error,verror,orspeed

errorindicatesthatthemodel wind islargerthanthe MDCRS wind. The resultsshow thatRUC has

smallbiasesand theadditionof recentMDCRS datareduces thesebiases.Both RUC and TW have

a slighthigh biasinspeed,--0.5m/s and-0.4 m/s,respectively.However, thesesmallbiasesaremis-

leading,as seeninSection4.5.The wind over theyear averaged alittleover20 rn/sfrom west south-

west.By allmeasures,addingrecentMDCRS toRUC improves performance bothintheon-average
measures and inthe reductionof oufliers.
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As noted earlier, the errors in the MDCRS reports enter into the errors in Table 8. Table 9 pro-

vides the uncorrected RMS error estimates in RUC and TW, along with values that are corrected to
remove the effects of the IVIDCRS errors. Both of the ¢sthnates of the MDCRS errors are used to

show the effect of differing estimates oft.he MDCRS errors. For CTAS applications, 5 rn/s is a signif-

icant headwind error. The RMS component errors for RUC are fairly close to 5 m/s even after correc-

tion, while the RMS component errors after adding recent MDCRS, at about 3. I m/s, are well below
5 m/s.

In addition to bulk statistics, it is useful to consider the distribution of errors. Figure 6 provides
a histogram of percent of MDCRS and count of MDCRS vs. vector error. The addition of recent

Table 8.

Comparison of 60 km RUC and 10 km TW
Results are for 1,228,588 aircraft reports.

(1,131,373 reports for % Speed Errors and Direction Errors)
Values are in m/s, except for % speed error, which is unitless,

and direction, which is in degrees.

variable mesn+/-std RMSE 50% 75% 90% 95%

TW u error -0.25+_.3.62 3.63 -0.27 1.84 4.03
TW v error 0.09+3.69 3.69 0.15 2.18 4.25
TW vector error 4.26+2.95 5.18 3.64 5.54 7.85
TW % speed error -0.40:_,2.9 22.9 0.9 11.3 23.2
TW direction error -0.01+16.1 16.1 -0.27 5.78 13.8

5.59
5.71
9.61

33.0
21.0

RUC u error -0.22._+4.61 4.62 -0.38 2.51 5.45
RUC v error 0.40._,-4.90 4.91 0.56 3.35 6.04
RUC vector error 5.67_.-,_3.64 6.74 4.99 7.38 10.18
RUC % speed error -0.60+.28.9 28.9 2.1 15.4 29.2
RUC direction error -1.03.+,22.5 22.5 -1.24 6.78 17.29

7.48
7.86

12.31
39.6
27.36

wind speed 2i .5+_.13.8 25.6 19.0 29.8 40.6
wind direction 252.6+67.9 261.5

47.8

Table 9.
Comparison of 60 km RUC and 10 km TW RMS Errors

After Correction for MDCRS Errors

Corrected values using MDCRS RMS errors of 2.55 m/s and 2.78

m/s are given. Results are for 1,228,588 aircraft reports.
Values are in m/s.

corrected oorreoted
.variable raw (2.85 m/s) (2.78 mla_

TW u error 3.63 3.14 3.08
TW v error 3.69 3.23 3.09
TW vector error 5.18 4.51 4.37

RUC u error 4.62 4.25 4.20
RUC v error 4.91 4.58 4.48
RUC vector error 6.74 6.24 6.14
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MDCRS is seen to reduce many of the vector errors greater than 5 m/s to less than 5 m/s. The number
of very large vector errors also drops. The counts of vector errors in each bin above about 8 or 9 m/s

is reduced by approximately half with the addition of recent MDCRS. Given the possible sensitivity
of user acceptance to occasional incorrect CTAS guidance, the reduction in these very large errors
due to the addition of recent MDCRS is very important.
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Figure d. Histogram of the percent and number of MDCRS reports vs. RUC (black bar) and TW

(gray bar) vector errors. Each bin labeled n contains errors between n-] and n, except bin 21
which contains all errors 20 m/s and greater.

Another approach to examining these data is via a cumulative probability plot as in Figure 7.
Here the percent of vector errors less than a value are plotted vs. that value. This allows the reader
to set any vector error threshold and then to determine how often the vector errors are larger or small-
er than this threshold. In Figure 7, RUC is seen to have 50 percent of its vector errors less than 5 m/s.
Terminal Winds is seen to have 70 percent of its vector errors less than 5 m/s, or conversely, TW
has 30 percent of its vector errors greater than 5 m/s. Terminal Winds has about half the number of

errors as RUC for any threshold which is greater than about 6 m/s, again showing that the addition
of recent MDCRS not only improves overall performance but also greatly reduces the potentially
problematic oufliers.

4.5. Performance Results vs. Wind Speed

Wind speed is one of the primary indicators of error magnitude. Figure 8 shows the RMS and
90th percentile vector error for various wind speeds. The errors rise monotonically with wind speed.
For wind speeds of zero to about 60 m/s, the rise in error is roughly linear, especially for TW. The
increase in RUC error with wind speed is more nearly linear if the errors are corrected for the

MDCRS errors since the correction is larger for smaller errors. The errors rise more rapidly for wind
speeds above approximately 60 m/s. However, this may be due to sampling error; there are hundreds
of thousands of samples from 5 m/s to 30 m/s, tens of thousands of samples from 35 m/s to 60 m/s, •

and dropping by about 50 percent for each bin thereafter to only 160 samples at $5 m/s.
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Figure 8. Vector error vs. wind speed. Both the RAI$ vector error and the 90th per-
centile error are shown. The _W estimate of the standard deviation of the vector
error is shown by the dashed line.

Also plotted in Figure 8 is the mean of the TW estimates of the standard deviation of the vector

error for each speed bin. These values are computed in the TW system for use in the interpolation,
and these values are largely a function of dam density at a given location. The relationship between
these values and the actual computed vector errors is considered in the next section. Errors are ex-

pected to rise as these TW error estimates rise. Given that low wind speeds generally occur near the

ground and high wind speeds generally occur aloft and that the data density may vary with altitude,
the apparent relationship between vector errors and wind speed may reflect the influence of data den-

sity changes with altitude. However, as Figure 8 shows, there is very little change in the TW error
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estimateswith mean wind speed,althoughthechange has thesame trendasthevectorerrorsvs.wind

speed plots.

Itisimportanttounderstandthenatureofthe errorvs.speed resultsinFigure 8.Figure9 shows

the ratioof speed errorto wind speed,with a change in signso thata negative value indicatesan

underestimation.RUC underestimatesthewind speed more thanhalfthetime forwinds over 13 m/s

and the underestimationgrows with wind speed.This means thattheerrorsinstrongwinds arenot

only very largebut are systematic.The additionof recentMDCRS toRUC reduces theamount of

underestimationby about half.When winds arestrong,even the 90th percentileerrorsarenegative,

indicatingthatvirtuallyallreportedwinds are too light.These resultsarc especiallyproblematic

sincethey indicatethatduringstrongwinds the errorsinRUC arelargeand highlycorrelated;these

two attributescan interacttocause largeerrorsin time-of-flightestimates.The additionof recent

MDCRS toRUC greatlyreducesboth the magnitude of theerrorsand theircorrelation.

TW 90%
RUC
TW 80%

RUC

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Wind speed in m/s

Figure 9. Speed error/wind speed vs. wind speed, Both the median and the 90th percentile
percent speed error are-shown.

4.6. Performance Results vs. TW Estimates of Error Variance

The TW algorithm uses a statistical interpolation technique The interpolation technique pro-

vides error variance es)_mates for each wind component, and th_s_ estimates arc used to derive TW

estimates of the RMS vector error. These TW estimates of RMS error depend on error models for

errors in RUC and in the MDCRS, as well as how these errors grow with distance and how these

errors am correlated; they arc a direct measure of information density. If the error models arc perfect

and thehypotheses underlying thetheorems appliedheld,therewould be perfectstatisticalagree-

ment between the measured RMS vectorerrorsand theTW estimatesof RMS error.The achiev_

relationshipbetween themeasured estimatesof the RMS vectorerrorvs.the TW estimatesof the,

RMS errorisgiven inFigure I0 alongwith themean wind speed vs.the TW estimateofRMS error.

All themeasures oferrorgrow withtheTW estimateof errorforsmall valuesoftheRMS error,but

unfortunatelyso does thewind speed.This presumably occursbecause thesepointsarenearthe air-
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port where air traffic is most dense and wind speeds lowest. After a TW estimate of RM$ error of
about 3 m/s, the mean wind speed is nearly constant. The RUC RMS error is also nearly constant.
indicating that the wind speed is no longer a factor in the measured TW errors. In this region the TW
RMS and 9Gth percentile errors continue to grow, indicating that the measured errors do grow with
increasing TW estimate of RMS error or with decreasing data density. This relationship is stronger
for the 90th percentile errors than for the RMS error. As expected, as the data density decreases, the
TW errors converge to the RUC errors.
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Figure lO. Vector *.rrorvs. TW estimate of the RMS vector.Both the RMS vector error and
the 90th percentile error are shown, as is the mean wind speed vs. TW estimate of the
RMS vector error.

The MDCRS errors partly obscure the relationship between TW vector errors and the TW esti-
mates of the vector error in Figure 10. Figure 11 shows the measured RMS vector errors for RUC

and TW corrected for the MDCRS errors (assuming a MDCRS error of 2.78 m/s) vs. the TW esti-

mate of the RMS vector error. The horizontal and vertical scales in the figure are matched to high-
light the relationship between the measured RMS vector errors and the TW estimates of the RMS

vector error. The light gray line on the diagonal in Figure 11 gives the ideal relationship between

the two values being plotted. There is some noise evident in the graph due to small sample sizes when
the TW vector error estimates are above about 5 m/s. The dependence of the vector errors on wind
speed is clearly evident at both ends of the graph. In the middle range of TW estimates of the RMS
vector error, where the mean wind speed is fairly constant, the measured TW RMS vector error rises

with the TW RMS vector error estimate, i.e., error increases with decreasing data density. Interest-
ingly, RUC also shows a slight relationship with the TW data density. A conjecture is that regions
where TW had many MDCRS reports in the recent past, RUC also had dense data somewhat farther
back in time when the model was run, and thus RUC performs better in the same regions that TW
performs better. The TW en-or models that underlie the TW estimates of the RMS vector error do

not account for the wind speed. Accounting for the wind speed in the error models may or may not
give much improvement in wind field accuracy, but it should improve the the TW estimates of the
errors.
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ABSTRACT

The National Aeronautics and Space Administration (NASA) is developing the Center-TRA-

CON Advisory System (CTAS), _ set of Air Traffic Management (ATM) Decision Support Tools

(DST) foren route (Center)and _erminal(TRACON) airspacedesigned toenablecontrollerstoin-

creasecapacityand flightefficiency.A crucialcomponent of the CrAS, or any ATM DST, isthe

computation ofthetime-of-fiightofaircraftalongflightpathsegments.EarlierNASA studiesshow

that accurate knowledge of the wind through which the aircraft are flying is required to estimate

time--of-flight accurately. There are currently envisioned to be two sources of wind data for CTAS:

• The Rapid Update Cycle (RUC) for the Center airspace, a numerical model devel-

oped by the National Oceanic and Atmospheric Administration 0NOAA) Forecast

System Laboratory (FSL) and run operationally by the National Weather Service

(NWS) National Center for Environmental Prediction (NCEP), and

• The IntegratedTerminal Weather System (ITWS) Terminal Winds ('FW) for the

TRACON airspace,developed atMIT Lincoln Laboratory under funding from the

Federal Aviation Administration(FAA).

The ITWS TW system takesinRUC data and refinesthe RUC forecastswith localmeasurements

of the wind.

This reportpresentsa study based inparton theapplicationoftheTW algorithmtothe Center

airspaceasavalue added improvement tothebaselineRUC product.Terminal Winds generallydoes

not supportthe fullCenter airspace;the domain of the prototypeMIT/LL ITWS TW system was

increasedtocover the Denver Center airspaceto supportthisstudy.The domain of theFAA opera-

tionalITWS TW may not extendmore than30 nauticalmilesbeyond a given TRACON. This study ......

ispartof a largereffortfunded by NASA which includesthe NOAA/FSL.

This study has threegoals:(I)determine theerrorsinthebaseline60 km resolutionRUC fore-

castwind fieldsrelativeto the needs of en routeDSTs such as CTAS, (2)determine the benefitof

using the TW algorithmtorefinethe RUC forecastwind fieldswith nearreal-timeMeteorological

Data Collectionand Reporting System (MDCRS) reports,and (3) identify,factorsthatinfiuencs

wind fielderrorsin orderto improve accuracy and estimateerrorsinrealtime.

The errorsinthe 60 km resolutionRUC wind fieldsand theRUC wind fieldsaugmented with

nearreal-timeMDCRS datavia the TW algorithmareexamined statistic_tlyover a one-year data

set.The additionof the recentMDCRS data isseen tosignificantlyimprove the RMS vectorerror

and the 90th percentilevectorerror(a statisticthatcapturesextreme errorsthatmay have a critical

impact on theacceptabilityofen routeDSTs advisories).The additionof theMDCRS dataalsore-

duces the number of hours of sustainedlargeerrorsand reduces the correlationamong errors.

The errors in the wind fields are seen to increase with increasing wind speed, in part due to an

underestimation of wind speed which increases with increasing wind speed. The errors in the TW

wind fields are seen to decrease with increasing numbers of MDCRS reports. The TW system, as

part of its wind field estimation, produces an estimate of the error variance for each estimate of the

wind. A relationship is shown to exist between the magnitude of the actual errors in theTW wind

field and the TW estimates of the error variance. Different types of weather are also seen to influence

wind fieldaccuracy.
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EXECUTIVE SUMMARY

The National Aeronautics and Space Administration(NASA) isdeveloping the Center-TRA-

CON Automation System (CTAS), a setofAir TrafficManagement (ATM) Decision Support Tools

(DST) foren route (Center)and terminalffrl_CON) airspacedesigned toenable controllerstoin-

creasecapacity and flightefficiency.A crucialcomponent of the CTAS, or any ATM DST, isthe

computation of the time-of-flight of aircraft along flight path segments. Early NASA flight tests
of the en route eIements of CTAS discovered that variations in wind prediction error have a signifi-

cant impact on the accuracy and value of en route DST advisories for ATC clearances.

There are currently envisioned to be two sources of wind data for CTAS:

• The Rapid Update Cycle (RUC) for the Center airspace, a numerical model devel-

oped at the National Oceanic and Atmospheric Administration (NOAA) Forecast

Systems Laboratory (FSL) and run operationally by the National Weather Service

(NWS) National Center for Environmental Prediction (NCEP), and

• The IntegratedTerminal Weather System (ITWS) Terminal Winds (TW) for the

TRACON airspace,developed atMIT Lincoln Laboratory under Rmding from the

FAA.

The ITWS TW system takesinRUC dataand rei_mestheRUC forecastswith localmeasurements

of the wind.

In light of the earlier NASA results on the effect of wind prediction errox_s, NASA initiated a
collaborative effort with Mrr/LL t-_d NOAA/FSL to determine the variations in wind prediction

accuracy and the impact of these,variationson typicalen routeATM operations;explore methods

and algorithms to improve wind predictionaccuracy (e.g.,RUC improvements and real-timeup-

dates of RUC with recento0servationsvia theTW algorithm);and develop wind eiTorprediction

models tosupportreal-timeATM DST probabilisticanalysesof_ajectory/conflictpredictionaccu-

racy.

This reportpresentsa studybased on theapplicationoftheTW algorithmtotheCenter airspace

asavalue added improvement tothebaselineRUC product.Terminal Winds generallydoes not sup-

portthefullCenter airspace;thedomain oftheprototypeMIT/LL ITWS TW system was increased

tocover theDenver Center airspacetosupportthisstudy.The domain oftheFAA operationalITWS

TW may not extend more than 30 nauticalmiles beyond a given TRACON.

The goals of thisstudy are to (I)determine the errorsin the baseline60 km resolutionRUC

forecastwind fieldsrelativetotheneeds of en routeDSTs such as CTAS, (2)determine thebenefit

of using theTW algorithmtorefinetheRUC forecastwind fieldswith nearreal-timeMeteorologi-

calData Collectionand ReportingSystem (MDCRS) reportsand identifyfactorsthatinfluencewind

fielderrorsinorder to improve accuracy and estimateerrorsinrealtime.

To determine wind fieldaccuracy,thewind fieldsarecompared toa datasetof aircraftreports

from the MDCRS thatarc not includedin the wind fieldstowhich they are compared. More than

one million MDCRS reportscollectedfrom 1 August 1996 to 1 August 1997 are used. These

MDCRS reportsarecollectedinaregionapproximately 1300 km on a sideand centeredon theDen-

ver InternationalAirport.Wind vectorerrorsof 7 rn/s- 10 m/s (approximately10 knots - 15 knots

of headwind error) are significant to CTAS.
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Compumd over the entizeone-year dataset,theRMS vectorerrorforRUC is6.74 m/s, which

isreduced to 5.18 rn/sfor TW. The me.dit_'lvectorerrorfor RUC is4.99 m/s, while incorporating

recent MI)CRS reduces these errors to 3.64 m/s, respectively. The 90th percentile RUC and TW vec-

tor errors are 10.18 m/s and 7.85 m/s, respectively. Also, it is seen that 11 percent of the RUC vector

errors are greater than 10 m/s and this is reduced to four percent by the addition of the recent MDCRS

data. The addition of recent MDCRS via the TW algolithrn provides a significant improvement in

these on-average wind field accuracy statistics.

Large errors are especially detrimental to CTAS if they are sustained over a large portion of the

grid and over a long period of time. Examining the 50th percentile hourly vector error shows that
out of the 7023 hours in the data set there are 829 hours when the hourly median RUC vector error

is 7 m/s or more, and that adding recent MDCRS data to RUC reduces this number of hours to 124.

There are 46 hours in the data set when the hourly median RUC vector error is I0 m/s or more, and

adding recent MDCRS reduces this number of hours to 1. The addition of recent MDCRS data to

the RUC wind field data provides a very large reduction in large sustained e_ors.

Another factor in whether or not wind field errors are detrimental to CTAS is their correlation

in time and space.All elsebeing equal,the wind fieldwith theleastcorrelationamong errorswill

provide the smallesttrajectoryerrors.Examining the correlationof errorsfor levelflightover 20

minutes at400 knots shows thatc_rorsin theRUC winds have correlationcoefficientsof approxi-

mately 0.45,and theadditionof rece,',,,,IDCRS reduces thesecoefficientsto 0.23.The correlation

of errorsfora descending flight",or IC;minutes at400 knots shows thaterrorsinthe RUC winds

have correlationcoefficientsu_therange of 0.29- 0.39,and theadditionof recentMDCRS reduces

thesecoefficientsto0.1I.

United Airlinesin_cased thefTequency of theirMDCRS reportsfrom May through August of

1997 to supportthisstudy.This allows the studyof TW wind fielderrorsvs.number of NK)CRS

reports,whore the number of MDCRS reportsisvariedfrom lessthan the currentnormal togreater
than the currentnormal. The resultsshow thatrelativeto the currentnormal levelof MDCRS, the

e):traMDCRS reportsreduce theTW RMS vectorerrorby about 0.3 m/s and reduce the TW 90th

percentilevectorerrorby about 0.5 m/s. This isconsidered to be a significantimprovement.

The errorsinboththeRUC wind fieldsand theTW wind fieldsareseen toincreasewithincreas-

ing wind speed,inpartdue to an underestimationof wind speed which increaseswith increasing

wind speed.A relationshipisshown toexistbetween the errorsinthe TW wind fieldand the local

datadensity.These relationshipsto wind errorswarrant greaterexamination.

Differenttypesofweather arcalsoseentoinfluencewind fieldaccuracy.Altocumulus lenticu-

laris,indicativeofmountain waves, isassociatedwith a decrease inwind fielderrors,while preci-

pitation,towering cumulus, and thunder areassociatedwith an increaseinwind fielderrors.Preci-

pitationprovides the bestsignalforincreasedwind fielderrorsof the four simple weather types

studied.The combination of thunder and towering cumulus did not provide a significantlybetter

signalthanthunder alone.The combination of thunder and precipitationprovided the bestsignalof

increasedwind fielderrorsof alltheweather types and combinations.

vi



ACKNOWLEDGMENTS

This work, part of a collaborative effort between NASA, M1T/LL, and NOAA/FSL, was funded
by the Center-TRACON Advisory System-Flight Management System (CTAS-FMS) Integration

activity within NASA's Terminal Area Productivity Program. Matt Jardin and Steve Green of NASA
Amos provided valuable coordination and insight into the meteorological sensitivities of ATM
en route DSTs and made significant contributions to the design of the study. Barry Schwartz and Start

• Benjamin made significant contributions to the design of the study and generously provided both
the lVlDCRS data usvd in the study and the hourly weather-type analysis. We would like to thank

United Airlines, and Carl Kuable, in particular, for genvrously agreeing to increase the observation
rate on many United aircraft. The extra United Airlines data were very valuable.

vii





TABLE OF CONTENTS

,bsWact

Executive Summary

Acknowledgments
List of Illnstra_ons

List of Tables

1. Introduction

2. The Terminal Winds System

2.1. Introduction to the TW Product

2.2. Design Considerations

2.3. TW System Overview

2.4. Analysis Overview

2.5. TW Interpolation T_chnique

3. Methodology
3.1. Data Collection

3.2. MDCRS Characteristics

3.3. Table Generation

3.4. C-eneration of Statistics

4. Statistical Results

Aircraft Accuracy4.1.

4.2. Restriction to Locations and Times when TW is not a Pass Through of RUC

4.3. Interpolation to Aircraft Position vs. Nearest Value

4.4. Performance Results Over All Reports

4.5. Performance Results vs. Wind Speed
4.6. Performance Results vs. TW Estimates of Error Variance

4.7. Performance Results vs. Altitude ........

4.8, Performance vs. Month

4.9. Performance vs. Day

4.10. Performance vs. Weather Type
4.11. Performance vs. Number of MDCRS

4.12. Performance vs. Maximum Allowed Number of MDCRS per Analysis Point

4.13. Performance vs. Separation in Time of MDCRS Reports and Wind Fields

4.14. Performance vs. Separation in the Vertical of MDCRS Reports
and Wind Field Levels

4.15. Analysis of Sustained Errors

4.16. Error CorrelationLengths

5, Conclusions

5.1. BaselinePerformance and Benefitsfrom Adding MDCRS to RUC

5.2. FactorsUseful inReal-Time Estimationof Error Magpi_"rude

5.3. PossibleFuture Work

Glossary
References

P.ag 

111

V

vii

xi

xii

I

5

5

5

6

8

10

15

15

15

18

18

21

22

26

27

27

29

31

33

34

34

35

39

40

40

41

43

44

57

57
58

58

61

63

ix





LIST OF ILLUSTRATIONS

1. Conceptual Overview Diagram for the Terminal Winds System.
2. Data processing modules for the 10 km Terminal Winds Analysis.
3. Distribution of MDCRS Reports for 1 April, 1997.

4. Distribution of MDCRS Reports for 1 May, 1997.
5. Correction to RMS Error Estimates due to Errors in MDCRS vs. RMS Error.

6. Histogram of the Percent and Number of MDCRS Reports vs. RUC (black bar)
and TW (gray bar) Vector Errors.

7. RUC and TW Cumulative Probability vs. Vector Error.

8. Vector Error vs. Wind Speed.
9. Speed Error/Wind Speed vs. Wind Speed.
10. Vector Error vs. TW Estimate of the RMS Vector.
11. RMS Vector Error Corrected for MDCRS Errors vs. TW Estimate

Of the RMS Vector Error.
12. Vector Error vs. Altitude.
13. Vector Error vs. Month.
14. TW and RUC Mean Vector Error :t:One Standard Deviation vs. Day.
15. TW RMS and 90th Percentile Vector Error vs. Data Density.
16. Vector error vs. Time After tae Hour.
17. Vector Error vs. Vertical Interpolation Distance.
18. Histogram of the Percent and Number of Hours vs. RUC (black bar)

and TW (gray bar) 25th Percentile Hourly Vector Errors.
19. RUC and TW Cumulative Probability vs. 25th Percentile Hourly Vector Error.

20. Histogram of the Percent and Number of Hours vs. RUC (black bar)
and TW (gray bar) Hourly Median Vector Errors.

21. RUC and TW Cumulative Probability vs. Hourly Median Vector Error.

22. Histogram of the Percent and Number of Hours vs. RUC (black bar)
and TW (gray bar) Hourly 75th Percentile vector Errors.

23. RUC and TW Cumulative Probability vs. Hottrly 75th Percentile Vector Error.
24. RUC Error Correlation vs. Horizontal Separation.
25. RUC Error Correlation vs. Horizontal Separation.
26. TW Error Correlation vs. Horizontal Separation.
27. TW Error Correlation vs. Horizontal Separation.
28. RUC Error Correlation vs. Pressure Separation.
29.RUC ErrorCorrelationvs.PressureSeparation.

30.TW ErrorCorrelationvs.PressureSeparation.
31.TW ErrorCorrelationvs.PressureSeparation.

32.RUC ErrorCorrelationvs.TemporalSeparation.

33.RUC ErrorCorrelationvs.TemporalSeparation.
34.TW ErrorCorrelationvs.Temporal Separation.

35.TW ErrorCorrelationvs.Temporal Separation.

36.RUC ErrorCorrelationvs.Temporal Separation.

7

9
17

17

25

29
30
30

31

32

33
34

35

36
4O

42
42

44
44

45

45

46

46

50
50

50

50
51

51

51
51
52

52

52
52

53

xi



LIST OF ILLUSTRATIONS

(Continued)

FAgn_

37. RUC Error Correlation vs. Temporal Separation.
38. TW Error Correlation vs. Temporal Separation.
39. TW Error Correlation vs. Temporal Separation.

53

53

53

LIST OF TABLES

Table

1. Scales of Analysis for RUC and Terminal Winds
2. Number of MDCRS, Binned by Analysis Level
3. Statistics for Maximum Separation of I Minute, 5 nab, 10 km
4. Statistics for Maximum Separation of 5 Minutes, 5 rob, 20 km
5. Correlation Coefficients for Errors in Same Aircraft Pairs

6. Comparison of Results Using All Reports vs. Using Reports when TW
has at Least a Minimal Amount MDCRS Reports

7. Comparison of Results Using Interpolation of Wind to Aircraft Position
vs. Using Nearest Wind Value

8. Comparison of 60 km RUC and 10 km TW
9. Comparison of 60 km RUC and 10 km TW R_MS errors afar correction

for MDCRS errors

10. Performance in Different Types of Weather
11. Comparison of TW with a Maximum of 5 Observations per Grid Point

and a Maximum of 10 Observations per Grid Point
12. Number of Hours with Hourly Nth Percentile Vector Errors

Above Given Thresholds

13. Separation Limits for the Generation of Correlations
14. Fit Parameters for Error Correlation vs. Horizontal Separation
15. Fit Parameters for Error Correlation vs. Pressure Separation
16. Fit Parameters for Error Correlation vs. Temporal Separation
17. Fit Parameters for Error Correlation vs. Temporal Separation

Using Six Parameters
18. Correlation of Errors for Nominal Separations Using Equation (11)
19. Comparison of 60 km RUC and l0 km TW after Correction for MDCRS

Errors Using Equation (10)

P.ag 

7
16

24
24
26

26

27

28

28
38

41

47

47

50

51

52

53

54

55

xii ..-



1. INTRODUCTION

The National Aeronautics and Space Administration (NASA) is developing the Center-TRA-

CON Advisory System (CTAS)[1][2], a set of Air Traffic Management (ATM) Decision Support

Tools (DST) for en route (Center) and terminal (TRACON) airspace designed to enable controllers

to increase capacity and flight efficiency. A crucial coi,lponent of the CTAS, or any ATM DST, is

the computation of the time-of-flight of aircraft along flight path segments. Early NASA flight tests

of the en route elements of CTAS discovered that variations in wind prediction error have a signifi-

cant impact on the accuracy and value of en route DST advisories for Air Traffic Control (ATC)

clem_ces[3][4].

There are currentlyenvisionedtobe two sources of wind data forCTAS:

• The Rapid Update Cycle (RUC)[5][6] fortheCenterairspace,anumerical model de-

veloped attheNOAA ForecastSystems Laboratory (FSL) and run operationaUy by

the NWS National CenterforEnvironmental Prediction(NCEP), and

• The Integrated Terminal Weather System (ITWS)[7][8][9] Terminal Winds

(TW)[ 10][II][12]fortheTRACON airspace,developed atMrr Lincoln Laboratory

under funding from theFederal Aviation Administration(FA.A).

The ITWS TW system takesinRUC data and refinesthe RUC forecastswith localmeasure-

ments ofthewind. InlightoftheearlierNASA resultson the effectofwind predictionerrors,NASA

initiateda collaborativeeffortwithMrr/12, and theNationalOceanic and Atmospheric Administra-

tion(NOAA)/Forecast System Laboratory (FSL)[13]todetermine thevariationsinwind prediction

accuracy and the impact of thesevariationson typicalen routeATM operations;exploremethods

and algorithmstoimprove wind predictionaccuracy (e.g.,RUC improvements and real-timeup-

datesof RUC with recentobservationsvia theTW algorithm);and develop wind errorprediction

models tosupportreal-timeATM DST probabilisticanalysesoftrajectory/conflictpredictionaccu-

racy.

This reportpresentsa study based on the applicationof the Terminal Winds algorithm to the ,_

Centerairspaceasavalue-added improvement tothebaselineRUC product.Terminal Winds gener-

allydoes net supportthefullCenter airspace;the domain oftheprototype MIT/LL ITWS TW sys-

tem was increasedtocover theDenver Centerairspacetosupportthisstudy.The domain oftheFAA

operationalrI'WS TW may not extend more than 30 nauticalmiles beyond a given TRACON.

The RUC isa mesoscale numerical weather predictionmodel thatincorporatesaircraftmea-

surements from theMeteorologicalData Collectionand Reporting System (MDCRS)[14], balloon

soundings,and othersensordataand solvesequationsof atmospheric physics topredictthe evolu-

tionof variousatmospheric parameters.The RUC data in thisstudy use a grid with a horizontal

resolutionof60 krn and a verticalresolutionof 50 rob.The RUC isrun every threehours,and each

run produces a setof hourly forecasts.A new version of the RUC thatuses a 40 krn horizontal

resolutionand runs every hour isindevelopment. In thisstudy,RUC always refersto the opera-

tional60 lax'.resolutionmodel. The timing ofthe RUC datacollectionand therunning of themod-

elresultsin the forecastsusuallybeing availableabou: threehours afterthe model rim time, al-

though occasionallyitis later.The post-processing of the RUC data in this studyused the

assumption thatthe RUC dataare always availableby threehours afterthe run time;the forecasts

used inthisstudy are always the three-,four-,and five-hour forecasts.The dataused to initialize



each model run are collectedin a three-hour period startingtwo hours priorto the nominal run

time and ending one hour after me nominal run time. This results in the measurement data in the

initialization of the model being at least two hours old by the time of the three-hour forecast, in-

creasing to being five hours old at the time the next forecast cycle is available.

The ITWS TW is a data assimilation system that uses a RUC wind forecast as an initial esti-

mate and refines the initial estimate using recent local measurements of the wind. These local mea-

surements can come from surface observing systems, Doppler weather radars, and MDCRS. The

ITWS TW system produces two wind _elds: one with a horizontal resolution of 10 km end an

'"_o" every 30 minutes and one with a horizontalresolutionof 2 km and an update every five

minutes.The TW system has been running operationallyinthe Lincoln ITWS testbedssince 1991.

In particular,the ITWS system collectsMDCRS thatarc not yet included in theRUC model and

uses them inthe refinement ofthe RUC forecastfields.The datacollectionperiodforTW extends

up to the run time.In thisstudy,the TW algorithm uses only these MDCRS reportsto refinethe

RUC forecastwind felds tothe 10 km resolutiongridevery 30 minutes.The 2 krn resolutionanal-

yses are not examined inthisstudy.While the terms TW and TW errorsare used throughout this

study,no Doppler weather rac4_rdataarc used. The term TW inthisreportisshorthandfor "RUC

augmented with recentMI)CRS reportsvia a limitedversionof theITWS TW algorithm."

This study has threegoals:

1. Determine the errorsin the baseline60 km resolutionRUC forecastwind

fieldsrelativetothe needs of en route DSTs such as CTAS;

2. Detern_lne the benefit of using the TW algorithm to refine the RUC fore-

cast wind fields with near real-time Meteorological Dam Collection and

Reporting System (MDCRS) reports;

3. Identify factors that influence wind field errors to improve accuracy and
estimate errors in rea._-time.

To determine wind field acc, n'acy, the wind fields arc compared to a data set of independent

wind measurements. _hese indepsndent measurements of the wind come from the MDCRS reports.

More than one million MDCRS Ieports collected during a one-year period starting 1 August 1995

ar_ used. These MDCRS reports _ collected in a region approximately 1300 km on a side and cen-

tered on the Denver International Airport. This is roughly the D_nver Center airspace. All MDCRS

reports are independent of the RUC _tree-, four-, and five-hour forecasts since they have not yet

been include_ in these fields. The MDCRS reports arc also not included in any TW field generated

before the MDCRS are taken, so 1he TW fields am i_dependent of the MDCRS as well. The differ-

ence between _ch MDCRS report and the most recent prior TW field and the difference between

each MDCRS report and the RUC forecast used in that TW fieId are computed and kept in a table,

along with the location and time o:._the report. The resulting values in the table arc then used to com-

pute the desired statistics.

The viewpoint taken in this study is that the distribution of en'ors in the wind fields is not

directly at issue. Rather, it is important to model the errors expected to be encountered by CTAS in

computing aircraft time-of-flight as opposed to modeling random errors throughout the entire air-

space. This is done by simply _suming that each MDCRS report is independent from any other

MDCRS report; the distribution cf MDCRS in this study is the likely distribution of aircraft for

which CTAS will hav_ to compute time-of-flight. This means, for several reasons, that the re-



portedaccuracystatisticsarenot directmeasuresof the overall accuracyof RUC or TW. For ex-
ample,thisstudyshowsthat wind field errors are greater at higher altitudes. Since there are more

MDCRS reports at higher altitudes, this tends to elevate the estimates of the RMS error in the wind
fields relative to the RMS error that would be computed if the evaluation uniformly sampled the

wind fields or if the evaluation corrected for the nonuniform sampling. On the other hand, errors

in regions of high aircraft density are also heavily represented in the statistics in this report, and

these errors are in regions where both RUC and TW have their densest input data. Therefore, these

regions can be expected to have smaller errors than the errors in ot'_erwise similar regions.

This report provides several types of analyses. The errors in the MDCRS reports influence the

results. A study of the errors in the MDCRS is presented first so that the influence of these errors

on later statistics can be evaluated. Wind field accuracy statistics are given for on--average accura-

cy; for example, mean, RMS, and median values. For some of the on--average studies, the distribu-

tions of errors vs. magnitude of the error is also provided. Statistics for the tails of the error dis-

Iribution are also given; for example the 90th percentile error. The statistics are provided for the

entire data set and some are provided for the data set subdivided in various ways; for example, by

altitude, by time of year, and by data density. Also given are statistics for the sort of sustained

errors for which CTAS might have trouble computing accurate time-of-fright estimates; for ex-

ample, hourly median error, and error correlation lengths. The third goal is addressed by examin-

ing the relationship between wind field errors and various wind field parameters; and by examin-

ing the relationship between wind field errors and different types of weather.

The impact of wind field errors on CTAS depends on aircraft speed and trajectory accuracy

requirements. The generation of meter times is less sensitive to wind errors than the generation of

conflict advisories and clearance advisories. Generating conflict and clearance advisories require

computing time-of-fright over approximately 20 minutes. For a ground speed of 420 knots

(7 nautical miles per minute), a constant along-track error of 1O knots results in a 29 seconds or

3.3 nmi error in estimated time--of-flight. En route separation minima are typically 5 nmi, and the

3.3 nmi is a significant fraction of the desired aircraft separation. When conflict calculations are

performed for aircraft converging from different directions, the errors tend to be of different sign;

one aircraft is earlier than expected and the other is later than expected, resulting in a combined

error which is larger than the error for a single aircraft. In this situation, a constant I0 knot along-

track error could significantly degrade the conflict prediction accuracy of en route DSTs (such as

CTAS) when generating ATC clearance advisories. Similarly, a constant 20 knot along-track error

gives _se to a trajectory error, even for a single aircraft, that is greater than the desired spacing.

W'md errors are rarely constant, or completely correlated, along a flight path, so along-track errors

will generally result in smaller time-of-flight errors than in this simple example. However, this

indicates that along-track errors with a magnitude of I0 knots are problematic, and along-track

errors with a magnitude of 20 knots are very serious.





2. THE TERMIN_..L WINDS SYSTEM

This section describes the full ITWS TW systenL Only a limited subset of this functionality

is used for this study. Terminal Winds generally does not support the full Center airspace. The
domain of the prototype MIT/LL ITWS TW system was increased to cover the Denver Center
airspace to support this study. The domain of the FAA operational ITWS TW may not extend
more than 30 nautical miles beyond a given TRACON.

2.1. Introduction to the TW Product

The Integrated Terminal Weather System acquires data from various FAA and NWS sensors
and combines these data with products from other systems (e.g., NWS Doppler weather radars
(NEXRAD) and numerical weather prediction forecasts from the RUC to generate a new set of

safety and planning/capacity iraprovement weather products fox the terminal area and adjacent
en route airspace. Operational users of the ITWS products to date include pilot_, controllers,
TRACON supervisors, terminal and en route traffic flow managers, airlines, Flight Service Sta-
tions, a_d terminal automation systems. The ITWS production system is currently being built by

Raytheon and will be deployed at 34 sites. These sites are generally the high-volt, me, heavily
weather-impacted TRACONs. As products are refined and new products developed, advanced
versions of ITWS _e expected to be fielded.

The TW algorithm produces estimates of the hox_zontal winds in an airport region. The pri-
mary users of this data are CTAS and human air traffic controllers. The TW obtains wind in-

formation from four types of sources:

• National scale numerical forecast model: RUC

• Doppler radars: TDWR [15] and NEXRAD [ 16]

• Commercial aircraft: MDCRS ....

• Surface anemometer networks: Low Level Wind Shear Alert System (LLWAS) [ 17] and

Automated Surface Observing System (ASOS) [18]

2,2, Design Considerations

There are a number of design considerations for a winds analysis system that wiil support
;tviation systems and operate with information from sensors in the terminal area. Ideally, users of
the gridded analyses levy performance requirements for resolution, accuracy, and timeliness.

However, the aviation systems that rely on these analyses were under development as TW was
being developed and did not provide .performance requirements. During development, the ap-
proach taken was to base resolution and timeliness on sensor characteristics, expected wind field
phenomenology, and knowledge of aircraft response to changing winds gained during the devel-
opment of the TDWR and LLWAS wind shear algorithms. The goal of minimizing the variance
of the wind vector error was also taken.

Meteorological Doppler radars provide estimates of the wind velocity component along the
radar beam (radial velocities) as wcU as measurements of return intensity (reflectivity). Doppler
radars can not directly measure the wind velocity component perpendicular to the radar beam.
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They provide accurate and dense measurements in regions with sufficient reflectors. Due to the

highly non-uniform distribution of data, the errors in the Doppler data tend to be highly corre-
lated. The analysis technique must _ able to estimate the horizontal winds from these single
component measurements. It also must account fox the higb_ly correlated errors and dynamic data
distxib_ttion inherent in the Doppler data.

The airspace covered by the TW grid extends from. the surface to 100 mb (approximately
50,000 ft. mean sea level (MSL)) and is divided into two regimes. The planetary boundary layer
(PBL) contains the atmosphere near the earth's surface, and it often contains wind structures

with spatial scales on the order of kilometers and temporal _cales on the order of minutes. Above
the PBL, wind structures typically have spatial scales of 10s of krn. and temporal scales of hours.

Doppler radars provide high--resolution information in the PBL where small scale wind struc-

tures are expected. Above the PBL, Doppler information becomes more sparse, and RUC and

MDCRS are important sources of additional information. A cascade-of-scales analysis is used to

capture these differen_ scales of atmospheric activity.

2.3. TW System Overview

The philosophy of the TW analysis system is that the national scale forecast model provides

an overall picture of the winds in the terminal airspace, although painted in very broad strokes.
The terminal sensors are then used to f'dI in detail and to correct the broad-scale picture. The

corrections and added detail can be provided ordy in those regions with nearby data. VCh_t
constitutes "nearby" depends on the spatial and temporal scales of the features to be captured in
the analysis. The refinement of the broad-scale wind field is accomplished by averaging the

model forecast with current data, using statistical techniques described later. This _11ows ",he
analysis to transition gracefully from regions with a large number of observations to regions with
very few observations or no observations at aLl. "_is also enables the analysis to cope gracefully
with unexpected changes to the suite of available sensors.

To account for the different scales of wind features and the differing resolution of the ii_-

formation provided from the various sensors, the analysi; employs a cascade-of-scales. This
cascade-of-scales uses nested grids, with an analysis having a 2 kau horizontal resolution and

five-minute update rate nested within an analysis having a 10 km horizontal resolution and
30-minute update rate;_ this in turn is nested within the RUC forecast with a 60 km horizontal

resolution and i80 minute update rate 2 as shown in Table 1. The vertical resolution is currently

50 mb (about 400 m near the surface, increasing to about 1000 m at aircraft cruise altitudes).

The vertical res_lution is expected to increased to 25 mb, wl_ich is the maximun_ vertical resolu-
tion the data wiU support. All of the data sources are used in the 10 km resolution analysis. Only ...............
the informa_on from the Doppler radars an_ LLWAS are suitable for the 2 km resolution analy-
sis.3

1.-'For this ;_tudy,the domain of the 10 km analysis was increased from its nominal domain size of 240 km x -
240 km.

2. RUC is scheduled to produce forecasts on a 40 km grid end with an ulx'iaterate of 60 minutes in the near fu_r¢.

3. ASOS data will also be included in the 2 km analysis when the ASOS update rates are increased as expected.



Table 1.

Scales of Analysis for RUC and Terminal Winds

Horizontal
Resolution Update Rate Domain 81ze 4 Max Altitude

RUC 60 km 180 mln national 100 mb

TW 10 km 30 mit_ 240 km x 240 km 100 mb

TW 2 km 5 min 120 km x 120 km 500 mb
i

4. Thedomainofthe10kmresolutiongridwasinorease'Jfromitsnominalsize to1300kmx 1300.kznforthisstudy.

This cascade-of-scales is appropriate for the scales to be captured in the analysis, the differ-
ent scales of information contained in the observations, aria provides a un_orm l_vel of refine-

ment at each step of the cascade. The domain sizes are dictated by the domain of CTAS for the

10 km resolution grid and by the coverage of the Doppler radars for the 2 km resolution grid.

A conceptual picture of the TW system is provided in Figure 1. The two gridded analysis

modules arc shown as gray boxes. The da_ shown entering each subalgorithm fTom the top are

used to produce each cycle'sinitialestimateof the currentwind field.The nationaldomain fore-

i

RUC

ASOS

ASOS

LLWAS
wind

fiord

TDWR**

* datamay be receivedfrom morethemone NEXRAD
** da_ may be receivedfrommorethan one TDWR

i

Figure 1: Conceptual overview diagram for the TW System,
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cast model, RUC, provides national scale information for use in forming the 10 km resolution

initialestimate,and the I0 km resolutionanalysisprovides coarse scale informationfor use in

forming the 2 km resolutioninitialestimate.Gridded informationflows from the coarserscaleto

the freerscale.In addition,each interpolationstepisshown fe_ding back itsprevious outputto

be used inproducing the initialestimateof the currentwind field.The observationaldam sou,-ces
used in the refinement of the initialestimate are shown feedingdata intothe subalgorithms from

the left.In each griddod analysis module., the refinement of the initialestimate in the least

squares analysisprovides a refinement of _.argerscaleinformation and a refinement of itspre-

vious outpm.

2A. Analysis Overview

Figure 2 provides a high-leveloverview of the processingst_psin the I0 km and 2 km reso-

lutionanalyses.Each analysistakes inwind information,computes grid-specificattributesof the

wind information,performs data qualityediting,and interpolatesthe wind information to the

analysisgrid to produce estimates of the wind fieldusing a statisticaltechnique (Optimal Es-

timatioxi,described indetailbelow). Each analysisistriggeredto run at specifictimes relativeto

the ITWS system clock.The 2 kin resolutionanalysisruns every five minutes and th_ 10 km

resolutionanalysisruns every 30 minutes. The followingare the top-levelfunctionsin the anal-

ysisstep:

i. Prepare initialestimate:This functionprovides an initialestimateof the currentwind

fieldand isexecuted each time the analysismodule isexecuted.Ifavailable,a large-

scale wind field,RUC for the 10 km analysisor the 10 km analysisfor the 2 km

analysis,isbi-linearlyinterpolatedto the analysisgrid.5The lastanalysisissmoothed

to remove transientwind features.6 _f there isa largescale wind field,itismerged

with the smoothed lastanalysisto form the initialestimateof the currentwind field;

otherwise, the smoothed lastanalysis isused as the initialestimate.The estimated

height above MSL of each gridpoint isadjustedto bring the RUC heightfieldinto

agreement with the pressure reported at the airport. 7

2. Prepare radar data: Ilxis ftmction maps all of the radial velocity data from one radar

to the analysis grid and performs the initial data quality processing. The reflectivity

information from the same radar is used in data quality editing. The radial velocity

values from each set of tilt data arc passed through a median filter to remove data

outliers and to smooth the data appropriately for each grid resolution, resampled to

the projection of the analysis grid, and then linearly interpolated in the vertical to -

5. For example, RUC is available only on the hour; no RUC data are used directly in the initial estimate for the
analyses run on the half hour, The previous RUC data do get included through the last analysis, although averaged
with observations if they'are available. The initial esti-,na_ is built point by point, and when a new RUC is available,
if the last analysis value at a given point is essentially the previous RUC value it is discarded in favor of the new
RUC value.

6. At stun--up, tliere is no previous TW wind field, so only RUC (or a default wind field, if need _ is used to form
the initialestimate.

7.-The adjuslxnent of the height field is not done in this study due to the lack of surface observations.

..............



form the final radial wind estimates. One instance of the prepare radar data function
runs for each radar.

3. Prepare vector data: This function processes the ASOS, LLWAS, az_d MDCRS data
into a standard data structure and assembles these data structures into a list. Pressure

is computed from the initial estimate height field for each observation having a mis-

sing pressure measurement. Both ASOS and LLWAS wind data are smoothed tempo-

rally using a weighted mean.

4. Data quality edit: This function provides data quality editing. Each wind observation,

vector or radial, is compared to a reference wind field, and observations dissimilar to

the reference wind field are discarded. The reference wind field is the interpolated

large--scale wind field if available; otherwise, it is the smoothed previous analysis.

S. Interpolate winds: This function refines the initial estimate field to agree with the ob-

servations in a least squares sense to produce the output wind field.

i..LWA$ '
MDCRS

ASOS

initial estimate

current analysis

radar

Figure 2. Dam processing modules for the 10 bn TW analysis. The 2/on analysis is
similar, ekcept that the 10 ion analysis replaces the RUC,
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2.$. TW Interpolation Technique

A slate-of-the-artanalysistechnique forproducing gridded fieldsfrom non-Doppler mete-

orologicaldam analysisisOptimal Interpolation(O1)[19][20].Optimal Interpolationisa statisti-

cal interpolation technique that under certain hypotheses gives an unbiased minimum variance
estimate. The idea is to use observations to perturb an initial estimate. Differences between the

observations and the initial estimate at the observation location are computed (Aj for the flh ob-

servation). The Aj terms are averaged in a least square sense to form a perturbation field which is

then added back to the initial estimate. If the observations, as has waditionally been the case, are

sparse relative to the desired resolution of the wind analysis, this provides a method to adjust the

overall wind field without smoothing over the detail, or pattern of winds, in the initial estimate,

which would occm' if the sparse data are analyzed directly. This method ties the errors in the

output field to the errors in the initial estimate, which is a reasonable trade-off when data are

sparse. Standard OI applications require observations to provide both a u and a v wind compo-

nent, which Doppler radars do not provide.

In R'aditionai multi-Doppler wind analysis, radars are sited so that they cover the region of

interest with significantly different viewing angles[21]. At a given location, each radar then pro-

vides an estimate of a different wind component. If two radars are used, a simple change of coor-
dinates to eastward and northward results in an estimate of the horizontal winds at that location

in standard form. If three or more radars are used, the resulting system of equations is overdeter-

mined and the horizontal wind can be estimated using least squares techniques. When the geom-

etry is good and each radar has sufficient return power, the resulting wind estimates are very

accurate. However, at locations without returns from at least two radars, this method cannot be

used. At locations where the radars are looking in nearly the same direction, the solution to the

equations is numerically unstable and the method again cannot be used. An operational system

using existing radars cannot count on good Doppler returns where they are desired, nor can the

system count on favorable radar siting.

We apply the Oauss--Markov Theorem[22] to develop an analysis to jointly analyze both

vector quantities and single component quantifies and to provide for a smooth transition between

an analyr_s of differences from the initial estimate in data poor regions to a direct analysis of

data in data rich regions. It is the ease with which the Oauss-Markov Theorem allows for such

properties that motivated its use. This technique provides a new capability which is important

since increasing numbers of Doppler weather radars are being deployed.

The TW analysis accounts for the differing quality of the wind information as well as errors

arising from data age and using data at locations removed from the location at which the data are

collected (displacement errors). The analysis also accounts for correlated errors in a manner sim-

ilar to Optimal Interpolation. Highly correlated displacement errors arise frequently due to the

nonuniform distribution of data from the Doppler radars. If these correlated errors are not ac-

counted for, these data dominate the analysis to a degree greater than is warranted by their in-

formation content.

The TW analysis technique has the following properties:

1. Multi-Doppler quality winds are automatically produced in regions where multi-

Doppler analyses are numerically stable.
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2. TW is numerically stable in regions where multi-Doppler analyses are not numerical-

ly stable.

3. Small gaps in multi-Doppler radar coverage are filled to produce near multi-Doppler

quality winds in these gaps.

4. The analysis directly analyzes data in data rich regions and analyzes differences from
the initial estimate in data sparse regions.

5. The analysis produces smooth transitions between regions with differing densities of
data.

Throughout this section the following notation is used:

• r denotes a radial wind component

• u denotes an east wind component

• v denotes a uorth wind component

• superscript a denotes an analyzed quantity

• superscript i denotes a initial estimate quantity

• superscript o denotes an observed quantity

• subscripts denote location, o denoting an analysis location

To apply the Gauss-Marker Theorem, the problem must be posed in the form

Ax ,ffid, where

x = (u a, v_) T is the tmknown horizontal wind vector

(1)

and d contains the initial wind estimate and information derived from observations in a window

centered on the analysis location. The size of the window adjusts dynamically based on loc_ data

density. The form of the matrix A depends on the type of data, vector and/or radial, to be analyzed.
The Gauss-Markov Theorem states that the linear minimum variance unbiased estimate of

(u_, _)T is given by

(u a, v_o)T. (A_-IA)-IATC--Id, (2)

if each element of d is unbiased and if C is the error covariance matrix for the elements of d. The
error covariance of the solution is

( A TC-1A) -1. (3)

When the data window contains m vector observations and n Doppler observations, equation

(I) has the form:
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The terms of the form ff_-foi) are estimatesof the displacement errorin the variablef that

arisefrom taking a measurement at locationm and using thatmeasurement as an estimate at

locationo. This isjustthe change inf between these two locations.The actualchange isnot

lazown, so it is estimated from the initial estimate of the field f. The initial estimate of the radial

wind component is computed from the initial estimates of u and v. The resulting estimates of the

form fm°--(f_-fo i) are unbiased estimates of the variable f at the analysis location provided the

observations are unbiased relative to the observation locations. This is true even if the initial

estimate has a bias, since differencing the initial estimate removes the bias.

In data rich regions, a small data window is employed which results in small displacement

distances. This coupled with the fact that the initial estimate is smoothed prior to applying the

Gauss--Markov Theorem causes the displacement error tenns to be near zero in data rich regions:

the observations in data rich regions are analyzed directly. This allows the analysis to incorporate

the full richness of detail in the observations and largely de.couples the errors in the output field

from the errors in the initial estimate. In data poor regions, large data windows are used and the

displacement terms come into full play. While the form of the analysis using the displacement

error correction is different from the form classical OI takes, it is equivalent: each is simply a

different method of solving the same least square problem, assuming a consistent set of error

models.

In practice, the error covariance matrix C is not known and must be estimated. There are

two types of errors to estimate. The fLrst is the error that arises from imperfect sensors and an

imperfect initial estimate. The second is the error due to an imperfect correction of the displace-

ment error. Our error models are based on the following simplifying assumptions:

1. Observations are unbiased.

2. Sensor errors from different observations are uncorrelated.

3. Errors in u and v components, measured or initial estimate, are uncorrelated.

4. Displacement errors and sensor errors are uncorrelated.

5.-Displacement errors are functions solely of the horizontal, vertical, and temporal dis-

tance of the observation from the analysis point.

These assumptions hay¢.been.tested_on.our.data set and are found to hold relatively well.
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With these assumptions, the error covadance matrix C decomposes into the sum of a sensor

error covariance matrix and a displacement error covariance matrix. The sensor error covarianc¢

matrix is diagonal, and the sensor error variances are reasonably well known. The remaining task

is the estimation of the displacement error covariance mau-ix.

The initial displacement error variance models are linear functions of the displacements,

horizontal, vertical, and temporal, between the observation Iocat;-,n and the analysis location.

The initial displacement error correlation model for two like components is a decreasing expo-

nential function of the displacement between two observation locations. The displacement error

covariance model for two non--orthogonal, non-parallel components must take into account the

angle between the two components. The ang?,e between the observed component and the u axis is

denoted by 0, with east at 0 °, and north at 90 °, and the displacement error in observation j is

denoted by 8_. Then the displacement error covariance for two observations is given by the fol-

lowing equation:

- cos(Ol-O2)[var( gvar( (4)

Unlike the multiple Doppler analysis, the TW analysis is always numerically stable due to

the inclusion of the initial estimate wind. The inclusion of a (u,v) data point provides two com-

ponent estimates at right angles, giving a maximum spread of azimuth angles. Since the Doppler

data arc usually much more numerous than the other data, the TW solution closely matches the

multiple Doppler solution at locations where the multiple Doppler prrftflem is well conditioned.

Otherwise, the analysis gives a solution that largely agrees with the radar observations in the

component measured by the radars. The remaining component is derived from the vector esti-
mates,
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3. METHODOLOGY

3.1. Data Collectio,_

The data for this study are collected from a region roughly 1300 km on a side and centered
on the Denver International Airport (latitudes between 34.88 degrees and 44.82 degrees, longi-

tudes between -97.86 degrees and-112.00 degrees). This airspace encompasses the Denver Cen-

ter airspace. The data were collected for 343 days between 1 August 1996 and 1 August 1997.

The MDCRS data are collected at the NOAA Forecast Systems Laboratory and provided to

Lincoln Laboratory via the Internet. Each MDCRS report contains the wind speed and direction,
an ah_aft ID, measurement location, the time the measurement was taken, and the time the

measurement was received. Also included are data quality flags.

The expec_nen_ RUC data are downloaded over the Intemet from a server at NCEP short-
ly after the data are generated. These data are on the grid and in the variables that the 60 km
resolution RUC model uses to solve its equations of atmospheric physics. These variables are

transformed into the isobaric variables used in the study using software written by the developers

of RUC and made available to Lincoln Laboratory. After transformation, the RUC dam variables

are those expected to be available through operational NCEP channels. These variables are on
the RUC 60 km horizontal resolution grid, with a vertical spacing of 50 rob. The RUC runs ev-
ery three hours, starting at 00Z, and produces a set of hourly forecasts. The three-hour, four-
hour, and five-hour forecasts are used. These forecasts represent the data that are usually avail-
able in time for use in ITS.

The TW data are generated off line using archived RUC dat_. and archived MDCRS data.

The TW is run at 10 minutes and 40 minutes after each hour. The TW grid has a horizontal
resolution of 10 km and a vertical resolution of 50 rob. The RUC data are fed into the TW sys-
tem at 10 minutes after the hour. The 10 minute offset is used in the real-time ITWS to allow for

RUC processing and transmission delays. E_ch MDCRS report is fed into the TW system based
on the time it was received. The 2 km resolution grid is not used in this study.

3.2. MDCRS Characteristics

The MDCRS measurements represent the winds averaged over a period of 0.I seconds. The

vast majority of the MDCRS data come from four airlines: United Airlines (UA), Delta Airlines
(DL), United Parcel Service (UP), and Northwest Airlines (NW). The IVIDCRS data are col-
lected and disseminated using various strategies. For example, DL aircraft collect data every five
minutes, and the data are immediately transmitted. But NW aircraft collect data with temporal

separations that alternate between six and seven minutes, and the observations are held until six
observations have been taken before the data are transmitted. United Airlines and United Parcel
Service aircraft use less consistent strategies. Some of the UA and UP data are collected every
minute, and some of the UA and UP data are collected every eight or nine minutes. The UA and
UP data are usually, but not always, held by the aircraft until four observations are made before

being transmitted.
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Starting 1 May 1997, a number cf UA aircraft began collecting one-minute data in support

of this study. Before 1 May, the number of UA reports averaged about 1000 per day from about
10 aircraft in the 13,000 x 1300 km region of interest. After 1 May, the number of UA reports

averaged about 5000 UA reports per day from over 160 aircraft, with many of the additional
aircraft collecting data every minute, q_ne number of reports per day from DL and NW is fairly

constant, at about 1400 per day for DL and about 500 per day for NW. The number of UP re-

ports per day varies greatly, from a low of about 50 to a high of about 1500.

The (approximate) maximum lag b¢tween the data collection time and the time the data

were rex.ived is 20 minutes for UA, 30 minutes for UP, and 20 minutes for NW. The DL data

have almost no lag betwe.n the time the data are collected and the time the data are received.

The MDCRS reports are available at all altitudes, but there are many more at cruise altitudes

than at other altitudes, as shown in Table 2. As can be seen in Figure 3 and Figure 4, the

MDCRS data are relatively uniformly distributed in the horizontal at cruise altitudes. Below

cruise altitudes, the MDCRS reports are largely restricted to standard descent and ascent corri-

dors ;nto and out of Denver, although some descent and ascent corridors into other airports also

show up, most notably at Albuquerque and Salt Lake City.

Table 2.

Number of MDGRS, Binned by Analysis Level

Nominal Altitude MSL

LoveI(MB) Feet

100 53,190

150 44,760

200 38,770

250 ........... 34,000

300 30,070

350 2,6830

400 23,580

450 20,810

500 18,290

550 15,960

600 13,800

650 11,780

700 9880

750 8090

800 6390

850 4780

9oo .... 3240

Meters

16,_10

13,640

11,820

10,360

9!60

8120 ....

7190

6340

5580

4870

4210

3590

3010

2470

1950

_1460

990

Number

(K)
0.0

0.1

501.5

317.2

75.3

62.3

27.5

49.1

26.0

25.4

25.5

26.5

27.5

27.9

33.2

3.3

0.1
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North

Figure _. Distribution of MDCRS reports for 1 April 1997. This day has 2904 MDCR$. This is prior

to United Airlines increasing their reporting rate.
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Figure 4. Distribution of MDCR$ reports for 1 May 1997. This day has 812_ MDCR$. This i,; after

United Airlines increased their reporting rate.

All MDCRS reports go through a simple validation process. First, each MDCRS arrives
with two or three quality control (QC) flags that are proauced by FSL: an "error type" flag, a
"corrected" flag, and a "roll" flag. The error type flag indicates if there is a known error in one

of the reported variables; for example, in the temperature or wind. The corrected flag ina]cates if

any correction to the data has been made; for example, some aircraft are known to provide re-

ports with the wind direction in error by 180 degrees, and these values are corrected for the
known error. The roll flag indicates that the aircraft is in a steep turn. Only reports with an error
type flag indicating no ex'rorare used. No corrected reports are used in this study. The roll flag is
not used to determine which reports are used. The second data quality step is to check the data
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values to see ff they are within acceptable ran,gas. For example, is the wind direction between

zero and 360 degrees? Finally, FSL keeps a list of aircraft ID for those aircraft that have pro-

duced suspect reports in the past. The data from these aircraft were examined. In all but one

case, the number of suspect observations is small enough to have negligible impact on the re-
sults, and these data are left in the data set. The data for one aircraft, NS20UA, contained numer-

ous reports with significant errors, and all the data from this aircraft are removed from the data
Set.

3.3. Table Generation

The differences between each MDCRS meas_xred wind vector component and the co=e-

spending RUC and TW wind component estimates are generated artd stored in tables. These dif-

ferences represent estimates of the errors in the w!.,'.d fields at the aircraft locations. The perfor-

mance measures are generated from these tables. Each MDCRS report is matched to the most

recent previous TW wind field, provided that the most recent TW wind field is not more than 30

minutes old. Likewise, each MDCRS is matched to the RUC wind field for the previous hour,

provided RUC is available that hour. This RUC wind field is the one used as input in the TW

wind field that matches this MDCRS. Using this method, each MDCRS report is matched to

RUC and TW wind fields that do not yet contain the report. Thus, each MDCRS provides an

independent estimate of the accuracy of a RUC wind field and an independent estimate of the

improvement to that RUC wind field due to the addition of MDCRS. The differences between
the MDCRS and _e TW and the differences between MDCRS and the RUC wind estimates are

then computed and stored along with auxiliary data in the table. Data for appro::imately 1.5 mil-

lion MDCRS reports are in the tables, although not all are used in generating the performance

statistics.

Two methods of computing the wind error estimates for each MDCRS are used. The first

simply uses the wind estimate at the TW grid point nearest the MDCRS location. The RUC data

are bi-linearly interpolated in the horizontal to the TW grid, so both RUC and TW are on the

same grid. The second method uses bi-linear interpolation in three dimensions to interpolate the

whld fields to tile aircraft location. Temporal interpolation is not used in either case. The results

from both methods are included in the table.

The auxiliary data in the table for each MDCRS are the following: the aircraft ID, the mea-

sured u and vwind components, the time of the measurement, the latitude and longitude of the

measurement, the atmospheric pressure at which the measurement was taken, and the TW etTor

variance estimate at the grid point nearest the measurement. This later term is an estimate of the

quality of the TW data in the region near the aircraft; and it is generated as part of the TW analy-

sis process.

3.4. Generation of Statistics

The performance statistics are generated from the tables described above. Only data with

results for both RUC and TWin the tables are used. This ensures that both RUC and TW are

compared to a common MDCRS verification data set. The software to generate the statistics is

written in Statistical Analysis Software (SAS). A number of different types of performance inca-
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suresaregenerated,and thedataaresubdividedinto a number of differentclassifications;for

example,by altitudeand by wind speed.

The statisticsfoundintheresultssectionarcasfollows:

I. Mean. The sum ofthedatavaluesdividedby thenumber ofdatavalues.

2. Root Mean Square(RMS). The squarerootof thesum of thesquaresof thedataval-
ues dividedby thesquarerootofthenumber ofdam values.

3. Standarddeviation.The RMS valueof the differencesbetween thedatavaluesand

themean of thedatavalues.This measuresthespreadof thedatavaluesabout their
mean.

4. RMS Error(RMSE). The RMS valueof thedifferencesbetween thedatavaluesand

zero.This issimilarto thestandarddeviationbut measures the spreadof thedata
valuesaboutzero.

5. Variance.The standarddeviationsquared.

6. Percentile.The Nth percentilevalue,P,of a setof valuesisthe smallestvalue for
which l_percentofthevaluesinthesetarelessthanP.

7. Correlation.Correlationmeasures how nearlytwo setsof data are r_latedlinearly.

Correlationvaluesrangefrom -I to I.The absolutevalueof thecorrelationmeasures

how nearlytherelationshipislinear,withzerobeingno linearrelationshipto I when

therelationshipisexactlylinear.The signgivestheslopeof thelinearrelationship.
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4. STATISTICAL RESULTS

There are three preliminary subsections before the bulk of the performance statistics are pres-

ented. The first subsection contains results of a study of the accuracy of the MDCRS wind measure-

ments. The values of (MIX2RS-wind field) are used to estimate the errors in the modeled wind

fields. However, the MDCRS have their own errors, and these errors contaminate the estimates of

the errors in the modeled wind fields. Following this are two subsections comparing performance

reeults for two restrictions of the data in the table containing the (_S-wind field) error esti-

mates. Section 4.2 compares results when all error estimates are used to results when only error esti-

mates in which TW has at least some data in addition to RUC are used, ?_ important goal of this

study is to determine the benefit of adding recent MDCRS to RUC via the TW system. Including

error estima_s when TW is merely a pass through of RUC does not support this goal. After this sec-

tion, the results are for error estimates only when TW had a least a ntinimal amount of IvIDCRS to

work with. This comparison provides information on how the results of the remaining subsections

might differ if the error estimates were included for cases when TW is a pass through of RUC. Sec-

tion 4.3 compares results using two different methods to generate the wind field estimate that is

compared to the MDCRS measured wind. In method one, the TW wind field value is the value at

th_ TW grid point nearest the aircraft location, and the RUC wind field value is generated by bi-lin-

ear interpolation in two dimensions to the TW grid point nearest the aircraft location. In method two,
each _vind field value is generated by bi-linear interpolation in three dimensions to the aircraft loca-

tion. The extra complication of the second method provides a significant increase in accuracy and

is used exclusively in the other subsections.

The on-average behavior of the errors, such as measured by mean and RMS, provide standard

measures of performance. While these standard measures are important, for the purposes of under-

smndh_g errors relative to the needs of ATM DSTs they need to be used in conjunction with addition-

al measures such as error correlation length. The results for u and v components largely tell the same

story as the results for vector errors. The results for the mean, standard deviation, RMS, and median

errors likewise each tell largely the same story. The usual practice in this report will be to provide

the results for the RMS vector error, except as noted. The individual RMS u and v wind component

errors can be estimated very closely by dividing the RMS vector error by the square root of two; that

is, the square of the individual RMS errors is nearly the square of the RMS vector error. However,
this does not hold for the outliers; for example, the 90th percentile errors. Errors in m/s can be con-

vetted to knots by multiplying by 1.9438, or converted approximately by doubling. Thus, an RMS

vector error measured in rn/s can be convet_ed, approximately, to an RMS headwind error in knots

by multiplying by 1.4 (approximately the square root of two). When considering these results it is

useful to keep in mind that a sustained headwind error of about I0 knots (roughly corresponding to

a vector error of about 7 m/s) is problematic for CTAS.

Perhaps more important than on-average performance for a fielded FAA ATC system is the

number of tirn..-s when the system provides incorrect guidance. The ATC personnel are very quick

to simply walk away from a system that is not extremely reliable, and with good reason; it takes very.

few go-arounds ¢)r other problems to negate _he benefits gained otherwise. For this reason, measures

of large errors are also provided. A human evaluation of' the MDCRS data that is used for conftrma-

tion of the accuracy of the wind fields reveals that some small percentage of reports, probably less

than one percent, are not credible. For this reason, percentile errors are reported only up to the 95th

percentile. The 90th percentile value is generally chosen for the figures to represent "worst case"
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systematic errors. The 90th percentile error is both robust to the errors in the MDCRS dam set and

represents a level at which errors are still numerous enough, if large, to cause CTAS problems; very
large but very rare errors may not affect CTAS trajectory calculations.

Results are also given for various breakouts of the dam set; for example, by wind speed, by data
density, and by altitude. The goal is to determine what variables might be used to estimate the errors
in a modeled wind field in real time. These results show that wind speed and dam density are related
to wind field errors, but the exact nature of the relationship is difficult to see as the wind speed and
data density tend to move in concert; in the data set, the regions of high winds tend to be the regions
with the least data, and vice versa. A detailed analysis of the relationship between these variables

and the errors is beyond the scope of this report.

Even if errors are small on average, there are expected to be periods of time and regions of space

where an'ore are large. Errors sustained over time or space are more likely to lead to incorrect CTAS
guidancethanare.sporadicerrors.Errorcorrelationlengthisanotherway toquantifysustaineder-

rorsand playsan importantroleindetermininghow errorsaffectCTAS performance.Errorsthat
arecorrelatedtendtoadd togetherwhen computingaircraRtime-of-flight,and errorsthatareun-

correlatedtendtocancel;allelsebeingequal,thewind fieldwiththeshortererrorcorrelationlength

willleadtobet_rtime--of-flightestimations.ErrorcorrelationlengthisnotdirectlyrelatedtoRMS

errors.Given two wind fields,onecanhavethelargerRMS errorbutalsohavetheshortererrorcor-

relationlength.

The additionofrec_ntMIX_.RS toRUC improvesthemean errorsand theirstandarddeviation

aswellastheRMS errors.Italsoreducesthenumber oflexgeerrorsineach studyperformedfor

thisreport.The improvements aregenerallyoperationallysignificanttoCTAS.

4.1. Aircraft Accuracy

The goal of this study is to determine statistical parameters of the wind field accuracy. The

MDCRS reports that are not yet included in the wind fields provide an independent source of con-
ftrmation of the correct winds at the locations of the aircraft. However, one problem in comparing
IVIDCRS to modeled wind fields is that errors in the MDCRS become enmeshed with the errors in

the Wind field. Since the MDCRS used in the comparisons are independent of the wind fields, the

variance of(MDCRS-model) is the sum cf the error variances of each term:

var(MDCRS--model) - var(MDCRS-truth) + vat(model-truth) .* 02AC+ O} (s)

where the terms OAC and of are the standard deviation of the error in the aircraft reports (MDCRS)

and the standard deviation of the error in the modeled wind (RUC or TW), respectively. The term

var(MDCRS--model) can be estimated directly fi'om the large set of (MDCRS-model) values. The

term var(MDCRS-truth) can be estimated indirectly, as described below. The desired term,

vat(model-truth), can then be estimated from the first two terms.

Here it is importmat to be cm'eful to define What is meant by truth, or the true wind. The wind

can be considered to be composed of wind features with various length scales. Features that are very

small relative to the response of a sensor or the needs of a particular user of the information may

be considered noise despite the fact that in some other sense they may _ real. In this case features
that are so small that they do not affect the computation of aircraft trajectories are considered to be
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noise. The error variance in the MDCRS reports is the sum of the sensor error variance relative to

the scales MDCRS intends to measure (0.1 sec average winds) and the variance in the wind due to

features that are sub-scale relative to CTAS. The error variance of the MDCRS relative to the needs

of CTAS is estimated. Some information on the contribution to that error from wind features that

are real, but sub--scale to CTAS, is also provided.

Given a large set of pairs of aircraft observations, with each aircraft in the pair at nearly the same
location and time, the variance in the difference between the two nearly coincident random measure-

ments is estimated by:

var(acI - ac2) - var(acI - truth + truth - ac2) - var(acl-truth) + var(ac2-truth), (6)

provided that the errors in the two aircraft reports are uncorrelated. The issue of correlated error is
addressed later.

Assuming that on average any random aircraft is no better or worse than another random air-

craft, the last equation is:

var(acl - ac2) ,= 2*var(ac - truth), or

var(ac-truth) = var(acl - ac2)12 (7)

Given a large set of aircraft observation pairs, the value var(acl .- ac2) can be estimated, and

from this value, the value var(ac-truth) can be estimated. Using this process, both measurement er-

rors and wind features smaller than the separation of the aircraft used to make the pairs are included

in the error variance estimate.

Error variance estimates are computed for two sets of separation limits. The first set allows a

maximum separation of one minute; 10 km in the east and north directions and 5 nab in the vertical

(at cruise altitudes 1 nab is about 24 meters). The second set allows a maximum separation of five

minutes; 20 km in the east and north directions and 5 mb in the vertical. The temporal and spatial

separation limits are linked by the speed of the aircraft: at cruise speeds, one minute of flying time

is approximately I0--15 kin. In practice, due to preferred aircraft altitudes and the search method

used to fred aircraft pairs, the average separations in time and in the vertical are much smaller than

the maximum limits, as seen in Table 3 and Table 4.

The set of tighter separation limits used in the results presented in "l_tble 3 represents the finest

separation limits that gives a usable number of aircraft pairs, and thus gives results that are as close

as possible, given the MI_RS data set, to the actual measurement errors uncontaminated by small-
scale wind features. The results from the second set give a set of e_ estimates better coupled to

the scales of wind features that affect trajectory analyses. However, even these separations may be

smaller than the features that affect CTAS. If so, the reported MDCRS errors are an underestimate

of the errors relative to CI'AS. The second set also has the benefits of more stable error estimates

due to the greater number of aircraft pairs and of having approximately the same number of same--

aircraft pairs and different-aircraft pairs. The difference in the two estimates for the two separation

criteria provides information on the portion of the error variance due to small-scale wind features;-

in principle, these two estimates can be used to extrapolate back to a separation distance of zero, so

that the error estimate is devoid of contamination by sub-scale winds.
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Table 3.

Statistics for Maximum Separation of 1 Minute, 5 rob, 10 km
Separation Statistlos for Palm of Alroraft:

all paira same AO different AC
variable mean,/-_, |_ mean+/-std mean+/-std
number of pairs: 23,303 15,272 8,031
&time (minutes): 0.47+0.50 0.33+0.47 0.72±0A5
&pressure (mb): 1.07:1:1.39 1.42±1.56 0.42±0.53
Aesst distance (km): 3.27±2.92 3.03+.2.93 3.71±2.86
&north distance (km): 2.27±2.49 1.55-j:1.93 3.63±2.84

Variance Estimates of acl-ao2 Components, (m/s)2:

u variance 3.41 1.74 6.59
v variance 3.35 1.76 6.37

RM8 Error Estimate for Single Alraraft, m/s:

u RMS error 1.31 0.93 1.81
v RMS error 1.29 0.94 1.78
vector RMS error 1.84 1.32 2.55

Table 4.

Statistics for Maximum Separation of 5 Minutes, 5 rob, 20 km
Separation statistlas for pairs of aimraft:

all pairs same AC different AC
vadable mean+l-std, rnean.l-std msan+l-std
number of pairs: 44,123 21,869 22,254
&time (minutes): 0.S0±0.83 0.57±0.62 1.01±0.95
Apressum (rob): 0.76±1.18 1.09±1.48 0.44±0.55
&east distance (km): 6.89±5.79 6.25±5.83 7.52±5.68
Anorth distance (km): 5.02±5.18 2.56._3.16 7.4 4±5.62

Varlanoe Estimates of a¢l.-ac2 Components, (m/s)=:

u variance 4.78 2.12 738
v variance 5.16 2.15 8.11

RMS Error Estimate for Single Aimraft, m/s:

u RMS error 1.55 1.03 1.92
v RMS error 1.61 1.04 2.01
vector RMS error 2.23 1.46 2.78

Equation(6)isan equalityifand onlyiftheerrorsinthetwo aircraftobservationsareindepen-
dent.Thisisexpectedtobe thecaseifthetwo observationscome from differentaircraft.Iftheob-

servationscome from thesame aircraft,any biasisineachmeasurement and theerrorsarenotinde-

pendent.In differencingthevaluesfrom the same aircraft,the biasescancel,leadingto a low
estimateoftheerrorvariances.Given theincreasedreportingfrequencyoftheUnitedand UPS air-

craft,the datasetcontainsa largenumber of closelyspaced observationsfrom the same aircraft.

The maximum, mean, and standarddeviationsof theaircraftseparationsused inestimatingthe

MDCR$ errorvarianceare given inTable 3 and Table 4.The corresponding varianceestimatesfor

(acl.-ac2)and the resultingestimatesfor the errorvarianceof the MDCRS reportsare alsogiven

inTable 3 and Table 4.
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The effect of the MDCRS errors on RMS error estimates based on differences between MDCRS

and the modeled winds depends on the the magnitude of the errors in the wind fields. The amount

that should be subtracted from a raw RMS error estimate to co__ect for MDCRS errors for a given

raw esEmate is given in Figure 5. These corrections are based on equation (5) and apply only to RMS

error estimates. The smaller the errors in the wind field, the greater the correction to account for the
MDCRS errors. Since TW is more accurate than RUC, the RMS error estimates for TW are over

estimated to a greater extent in the statistics than are the RMS error estimates for RUC. For this rea-

son, the actual improvement due to the inclusion of MDCRS is greater than shown in the uncorrected

results. Because ",here is some uncertainty in the exact value of the MDCRS errors relative to the

needs of CTAS and because the corrections apply only to RMS errors, the results in this report are

for uncorrected errors unless otherwise specified.
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Figure 5. Correction to RMS error estimates due to errors in MDCRS vs. RMS error.
The correction using a MDCRS error of 2.78 m/s is shown in gray and the correction
using an MDCRS error of 2.55 mls is shown in black.

Equation (8) gives the relationship between the variance estimate derived from pairs of the same

aircraft and the variance estimate derived from pairs of different aircraft, where the term correlation

is the correlation in errors in the same-aircraft pairs.

var..same = var diff*(]-correlation) (8)

Table 5 shows the results from applying equation (8) to the data in Table 3 and Table 4. In each

case, the resulting correlation coefficient is slightly larger than 0.7, showing that a very large portion

of the errors in the MDCRS reports are biases that persist at leest as long as the separations used in

forming the aircraft pairs used in the analysis.

The above analysis is concerned with the statistical pzoperties of the eri'ors in the MDCRS re-

ports, or on average errors, and assumes that the MDCRS reports are reasoriable measurements with

errors distributed about zero or at least distributed about some offset or bias. Examining the reports

by hand shows that some small subset of the reports have other types of errors. Occasionally, re-
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Table 5.
Correlation Coefficients for Errors

in Same Aircraft Pairs

variable from Table 3 from Table 4

correlation in u error: 0.736
correlation in v error: 0.724

0.713
0.735

ported altitudes have very large discontinuities: an aircraft drops hundreds of mb for a moment and

then jumps back to its original altitude. These are clearly erroneous reports. Large discontinuities

in the wind values are also occasionally seen. It is difficult to know whether or not these are incorrect

measurements or are due to strong, small-scale wind features. An automated search though the data

set of MDCRS reports has not been done, but it appears that these sorts of problems affect well under

one percent of the reports. The small fraction of reports that do not fit the statistical models underly-

ing the analyses should not adversely affect the results.

4.2, Restriction to Locations and Times when TW is not a Pass Through of RUC

An importantgoalof this study is to understand the value of adding recentMDCRS to RUC via

the ITWS Terminal Winds a_gorithm. For this reason, statistics are computed only for those aircraft

observations where TW is not merely a pass through of RUC data unless specifically noted. Table 6

gives a comparison of vector errors using alI aircraft and vector errors using only those aircraft at

locations where TW is not a pass through of RUC. The first thing to note is that about 11 percent

of the aircraft are at locations where TW is a pass through of RUC, The RMS vector error in TW

is increased by about 0.2 nYs if art aircraft are included, and the 90-percentile vector error increases

by about 0.3 m/s. This should be kept in mind when considering overall vector errors in TW, since

after this point the only results reported are for aircraft where TW is not a pass through of RUC,

except where explicitly noted. This restriction has almost no effect on the RUC performance results.

Table 6.

Comparison of Results Using All Reports vs. Using Reports When TW

Has at Least a Minimal Amount MDCRS Reports. Values are in m/s

number of reports used: all = 1,387,776, restricted = 1,228,588,
dropped = 159,188 or 11.5%

variable mean+l-.std RMSE 50% 75% 90% 95%

TW vector error
all 4.42.¢.3.12 5.41 3.76 5.74 8.17 10.04
restricted 4.26+2.95 5.18 3.64 5.54 7.85 9.61

RUC vector error
all 5.69+3.69 6.78 w4.99 7.39 - 10.22 12.39
restricted 5.67¢-3.64 6.74 4.99 7.38 10.18 12.31
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4.3. Interpolation to Aircraft Position vs. Nearest Value

There are two approaches used to compute the modeled wind vector that is matched to each air-
craft observation once a wind field is matched to the aircra_ time. The simplest approach is to take

the wind vector at the Terminal W'mds grid point nearest the aircr_. In this approach the RUC wind

field is interyolawd to the TW grid using bi-linear interpolation so that both wind fields are on the

same grid. A more sophisticated approach uses hi-linear interpolation in 3--D on the surrounding

eight grid points to interpolate the winds to the aircr_ position. The value of the extra complexity
was not known. Table 7 shows the results on the entire year database. The benefit to TW is about

a third of a m/s for the RMS vector error and slightly less for RUC, and the benefit is greater for the

larger percentile errors. Given the substantial benefit relative to the modest increase in complexity

of the second approach, _e 3--D interpolation is justified for use in CTAS. For this report, olfly re-

suits using tile 3-D interpolation are given, except in Table 7.

Table 7.

Comparison of Results Using Interpolation of Wind
to Airoraft Position vs. Using Nearest Wind Value

Results are for 1,228,588 :_t-craftreports. Values are in m/s.

vaflable mean+l-std ;_ 50% 75% . 90% 95%

nearest 4.53¢-3.21 5.55 3.82 5.91 8.47 10.44
interpolated 4.26+2.95 5.18 3.64 5.54 7.85 9.61

nearest 5.85¢-3.76 6.96 5.14 7.62 10.52 12.73
interpolated 5.d7+3.64 6.74 4.99 7.38 10,18 12.31

4.4. Performance Results Over All Reports

A number of statistics are computed over the entire year. These results provide information on

the sorts of errors encountered by the a/reran. Since the aircra_ are not uniformly distributed in space

and time, these results are not necessarily an accurate or _II account of the quality of the wind fields.

Since a goal of this study"is to determine the accuracy of die wind fields relative to CTAS, it is impor-

_mt to study the errors encountered as opposed to studying the fields in general. For example, the

results are dominated by the aircraft at cruise altitudes, except for the results broken down by alti-

tude. There are also more aJrcra_ after May due to United Airlines turning on many of their aircra_

in order to provide more. numerous data on ascent and descent.

The results for the entire year are provided in Table 8. Over 1.2 million _S are used on

343 days. The resull;s show that RUC and TW have a slight low bias in the u component and RUC

has a slight high bias in the v component. The RUC direction bias is only-I degree, and the addition

of recent Iv[I_RS data reduces this bias to essentially zero. Both RUC and T_V have a slight low

bias in speed, --0.6 rrv's and --0.4 m/s, respectively. The wind over the year averaged a lirde over

29 m/s from west southwest. By all measures, adding recent MDCRS to RUC improves performance

both in the on-averagemeasures and in the reduction of outliers.

As noted earlier, the errors in the MDCRS reports enter into the errors in Table 8. Table 9 pro-

vides the uncorrected RMS error estimates in RUC and TW, along with values that are corrected to
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Table 8.

Comparlson of 60 km RUC and 10 km TW
Results are for 1,228,588 aircraft reports.

(I ,131,373 reports for % Speed Errors and Direction Errors)

Values are in m/s, except for % speed error, which is unitless,
and direction, which is in degrees.

wriable

TW u error
TW v error
TW vector error
TW % speed error
TW direction error

m._n+/-.std RMSE 50% 75% 90% 95%

-0.25±3.62 3.63 --0.27 1.84 4.03 5.59
0.09±3.69 3.69 0.15 2.18 4.25 5:71
4.26.-1:2.95 5.18 3.64 5.54 7.85 9.61

-0.40±22.9 22.9 0.9 11.3 23.2 33.0
-0.01±16.1 16.1 -0.27 5.78 13.8 21.0

RUC u error
RUC v error
RUC vector error
RUC % speed error
RUC direction error

•.-0.22._-4.61 4.62 -0.38 2.51 5.45 7.48
0.40_-4.90 4.91 0.56 3.35 6.04 7.86
5.67+.3.64 6.74 4.g9 7.38 10.18 12.31

-0.60+.2_.9 28.9 2.1 15.4 29.2 39.6
-1.03+.9.2.5 22.5 -1.24 6.78 17.29 27.36

wind speed
wind direction

21,5±13.8 25.6 19.0 29.8 40.6 47.8
252.6+.67.9 261.5

Table 9.
Comparlson of 60 km RUC and 10 km TW RMS Errors

After Correction for MDCRS Errors
Corrected values using MDCRS RMS errors of 2.55 m/s and 2.78

m/s are given. Results are for 1,228,588 aircraft reports.
Values are in m/s.

corrected Gorrected
vada__hle rgW (2.55 m/s) (2.78 mls_

TW u error 3.63 3.14 3.08
TW v error 3.6g 3.23 3.09
TW vector error 5.18 4.51 4.37

RUC u error 4.62 4.25 4.20
RUC v error 4.91 4.58 4.48
RUC vector error 6.74 6.24 6.14

remove the effects of the MDCRS errors. Both of the estimates of the MDCRS errors are used to

show the effect of differing estimates of the MDCRS errors. For CTAS applications, 5 m/s is a signif-

icant headwind error. The RMS component errors for RUC are fairly close to 5 m/s even after correc-

tion, while the RMS component errors after adding recent MDCRS, at about 3.1 m/s, are weU below

5 m/s.

In additionto bulk statistics,itisusefulto considerthe distributionoferrors.Figure6 provides

a histogram of percentof MDCRS and count of MDCRS vs.vec¢orerror.The additionof recent

MDCRS isseen toreduce many ofthevectorerrorsgreaterthan5 m/s tolessthan5 m/s.The number

of very largevectorerrorsalsodrops.The countsofvectorerrorsineach bin above about 8 or 9 rn/s
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is reduced by approximately half with the addition of recent MDCRS. Given the possible sensitivity
of user a_'ceptance to occasional incorrect CTAS guidance, the reduction in these very large errors
due to the addition of recent MDCRS is very important.
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Figure6.Histogramofthepercentand numberofMDCRS reportsvs.RUC (blackBar)and

(graybar)vectorerrora.Fetchbin labeledn containserrorabetweenn-I and n,exceptbin2]
which contains all errors 20 rigs and greater.

Another approach to examining these data is via a cumulative probability plot as in Figure 7.
Here the percent of vector errors less than a value ere plotted vs. that value. This allows the reader
to set any vector error threshold and then to determine how often the vector errors are larger or small-
er than this threshold. In Figure 7, RUC is seen to have 50 percent of its vector errors less than 5 m/s.
Termined W'mds is seen to have 70 percent of its vector errors less than 5 m/s, or conversely, TW

has 30 percent of its vector errors greater than 5 m/s. Terminal Winds has about half the number of
errors as RUC for any threshold which is greater than about 6 m/s, again showing that the addition

of recent MDCRS not only improves overall performance but also greatly reduces the potentially

problematic outliers.

4.$. Performance Results vs. Wind Speed

Wind speed is one of the primary indicators of error magnitude. Figure 8 shows the RMS and

90th percentile vector error for various wind speeds. The errors rise monotonically with wind speed.
For wind speeds of zero to about 60 m/s, the rise in error is roughly line_, especially for TW. The
increase in RUC error with wind speed is more nearly linear ff the errors are corrected for the
MDCRS errors since the correction is larger for smatler errors. The errors rise more rapidly for wind

speeds above approximately 60 rn/s. However, this may be due to sampling error; there are hundreds
of thousands of samples from 5 m/s to 30 m/s, tens of thousands of samples from 35 m/s to 60 m/s,

and dropping by about 50 percent for each bin t_ereafter to only 160 samples at 85 m/s.

Also plotted in Figure 8 is the mean of the TW estimates of the standard deviation of the vector
error for each speed bin. These vahes are computed in the TW system for use in the interpolation,
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Figure 8. Vector error vs. wind speed. Both the RM5 vector error and the 90th per-

centile error are ahown. The TW estimate of the standard deviation of the vector

error is shown by the dashed line.

and these values are largely a function of data density at a given location. The relationship between

these values and the actual computed vector errors is considered in the next section. Errors are ex-

pected to rise as these TW error estimates rise. Given that low wind speeds generally occur near the

ground and high wind speeds generally occur aloft and that the data density may vary with altitude,

the apparent relationship between vector errors and wind speed may reflect the influence of data den-

sity changes with altitude. However, as Figure 8 shows, there is very little change in the TW error

estimates with mean Wind speed, although the Change has the same trend as the vector errors vs. wind

speedptots.
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It is importantto understand the nature of the error vs. speed results in Figure 8. Figure 9 shows

the ratio of speed error to wind speed. In this figure it is seen that RUC, on average, underestimates

the wind speed and that this unde, restimation ,s greatest when the wind speed is highest. This means

that the errors in strong winds are not only very large but are systematic. The addition of recent

MDCRS to RUC reduces the amount of underestimation by about half. When winds are strong, even

the 90th percentile errors are negative, indicating that virtually all reported whlds are too light. These

results are especially problematic since they indicate that during strong winds the errors in RUC are

large and highly correlated; these two attributes can interact to cause large errors in time--of-flight

estimates. The addition of recent MDCRS to RUC greatly reduces both the magnitude of the errors
and their corre!adon.
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Figure 9. Speed error/wind speed vs. wind speed. Both the median and the 90th percentffe
percent speed error are shown.

4.6. Performance Results vs. TW Estimates of Error Variance

The TW algorithm uses a statistical interpolation technique. The interpolation technique pro-

vides error variance, estimates for each wind component, and these estimates are used to derive TW

estimates of the RMS vector error. These TW estimates of RMS error depend on error models for

errors in RUC and in the MDCRS, as well as how these errors grow with distance and how these

errors are correlated; they are a direct measure of information density. If the error models are perfect

and the hypotheses underlying the theorems applied held, there would be perfect statistical agree-
ment between the measured RMS vector errors and the TW estimates of RMS error. The achieved

relationship between the measured estimates of the RMS vector error vs. the TW estimates of the

RMS error is given in Figure I0 along with the mean wind speed vs. the TW estimate of RMS error.

All the measures of error grow with the TW estimate of error for small values of the RMS error, but

unfortunately so does the wind speed. This presumably occurs because these points are near the air-

per, where air U-a_c is most dense and wind speeds lowest. After a TW estimate of RMS error of
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about3 m/s, themeanwind speedis nearlyconstant.TheRUC R.MSerror is alsonearlyconstant,
indicating that the wind speed is no longer a factor in the measured TW errors. In this region the TW
RMS and 90th percentile errors continue to grow, indicating that the measured errors do grow with

increasing TW estimate of RMS error or with decreasing data density. This relationship is stronger

for the 90th percentile errors theaz for the RMS error. As expected, as the data density decreases, the

TW en'ors converge to the RUC errors.
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TW estimate of the RMS vector error

Figure 10. Vector error vs. TW estimate of the RM$ vector. Both the RM$ vector error and

the 90th percentile error are shown, as is the mean wind speed vs. TW estimate of the
RIdS vector error.

The MDCRS errors partly obscure the relationship between TW vector errors and the TW esti-

mates of the vector error in Figure 10. Figure 11 shows the measured RMS vector errors for RUC

and TW corrected for the MDCRS errors (assuming a MDCRS error of 2.78 m/s) vs. the TW esti-

mate of the RMS vector error. The horizontal and vertical scales in the figure are matched to high-

light the relationship between the measured RMS vector errors and the TW estimates of the RMS

vector error. The light gray line on the diagonal in Figure 11 gives the ideal relationship between

the two values being plotted. There is some noise evident in the graph due to small sample sizes when

the TW vector error estimates are above about 5 m/s. The dependence of the vector errors on wind

speed is clearly evident at both ends of the graph. In the middle range of TW estimates of the RMS

vector error, where the mean wind speed is fairly constant, the measured TW RMS vector error rises

with the TW RMS vector error estimate, i.e., error increases with decreasing dam density. Interest-

ingly, RUC also shows a slight relationship with the TW data density. A conjecture is that regions

where TW had many MDCRS reports in the recent past, RUC also had dense data somewhat farther

back in time when the model was run, and thus RUC performs better in the same regions that TW

performs better. The TW error models that underlie the TW estimates of the RMS vector error do

not account for the wind speed. Accounting for the wind speed in the error models may or may hot

give much improvement in wind field accuracy, but it should improve the the TW estimates of the

errors.
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Figure 11. RMS vector error corrected for MDCRS errors vs. TW estimate

of the RMS vector error. The mean wind speed vs. TW estimate of the
RMS vector error is alsoShown.

4.7. Performance Results vs. &ltitude

Another useful way to break down the error distribution is by altitude. The results over the year
are dominated by the MDCRS at cruise altitudes so that important variations in the results, as aircraft

descend to an airport, may be obscured. The R.MS and 90th percentile vector errors for each of the

50 mb wind field levels are given in Figure 12. The vector errors are largest at cruise altitudes and

near the ground. At both altitude extremes the RUC 90th percentile errors are well above the level
at which en route DSTs may expect to have trouble (a vector error of 7 rrds ora headwind error of
10 knots). The addition of recent MDCRS to RUC greatly reduces the 90th percentile en'or; the 90th

percentile ¢_r is improved by nearly 5 m/s at 750--800 rob. In the TRACON airspace, attitudes with
pressures roughly greater than 500 mb or below approximately 18,000 ft. MSL, the addition of re-
cent lVlDCRS to RUC brings the 90th percentile error down to about 7 m/s or lower. The addition
of recent MDCRS to RUC is especially useful in the lower atmosphere; the RUC errors grow as the

altitude drops while the TW errors are nearly constant in the lower atmosphere.

The errors above 300 mb dominate the error analyses performed over the entire data set due to

the abundance of MDCRS reports at those altitudes. The wind speeds are greatcr at higher altitudes

and decrease steadily towards lower altitudes, so the larger errors at higher altitudes are expected.
Winds speeds are lower in the lower altitudes which does not explain the larger RUC errors there.
The large RUC errors in the lower atmosphere may reflect difficulties in modeling the more compli-
cated physics there. Errors can also be expected to vary with data density. The TW estimate of the

RMS vector error stays between about 3 m/s and 4 m/s, and the measured TW RMS errors closely

track the changes in the TW_estimates of the RMS vector error across the entire spread of altitudes.
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Figure 12. Vector error vs. altitude. Both the RM$ vector error and the 90th percen_te
error are shown,

4.8. Performance vs. Month

The RMS and 90th percentile errors for RUC and TW for each month of the study are shown
in Figure 13, along with the monthly mean wind speed and TW estimate of the monthly RMS vector
error. The errors closely track the movements of the mean wind, with some minor exceptions. There

is a slight dip in the errors in November d',at is not matched by a dip in wind speeds and a slight in-
crease in the errors in April not matched by an increase in wind speeds. Given that the TW estimate
of the RMS vector error changes very little over the year, the expectation is that the variation in the

measurederrorsisdrivenby thechangesinthewind speed.

4.9. Performance vs. Day

The mean vector error with error bars of one standard deviation are shown in Hgure 14. The

gaps are missing days. The results show that the addition of recent MDCRS to RUC improves both

the mean error and the standard deviation. An analysis of each day shows that the addition of recent
MDCRS to RUC provides an improvement in the mean error and in the standard deviation on all

343 days. There are many days where the RUC mean vector error plus one standard deviation is well
above 10 m/s (nominally equivalent to a 14 knot headwind error), and there are three days where

it is above 15 m/s (nominally equivalent to a 20 knot headwind error). Given that averaged over the

year the RUC mean vector error plus one standard deviation is 9.31 m/s, this is not surprising, but

this indicates that on some days the RUC errors can be expected to be large enough to have a signifi-

cant operational impact on CTAS, The addition of recent MDCRS reduces the RUC mean vector
error plus one standard deviation So that only on several days this value is above 10 m/s, and it is

wellbelow 15 m/s on alldays.
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Figure 13. Vector error vs. month. Both the RMS vector error and the 90th percentile
vector error are shown,

4.10. Performance vs. Weather Type

The statistical performance of _UC and TW are broken out for different t3_s of weather. This

part of the study is designed primarily by FSL and i: o''_pted here for consistency of results. The
weather classifications are as follows:

,, Altocumulus (standing) lenticularis (ACSL), which is associated with moun-
tain waves in the l_ of the Rocky Mountains.

• Precipitation. Any tTpe.

• Towering cumulus (TCU), which implies strong convection and strong verti_
cal motions.

• _l_under, which is also associated wirl_ strong convection and strong vertical
motions.

• Thunder and towering cumulus.

• Thunder and precipitation.

The determination of when the various weather phenomena exist in the Denver area is per-

formedby searchingtheDenver AviationRoutineWeatherReport(METAR) surfaceobservations.

The weathertypeclassificationsarctreatedasvalidfora givenhourandfortheairspacewithinone

degreeoflatitudeand onedegre,coflongitudeoftheI_nver InternationalAirport(DEN).The deter-
minadon of when thevariousweathertyposarepresent(ornot)isprovidedby FSL. The weather
classificationsareavailablefortheyearperiod,excludingtheperiodof12October1996to8 January

1997,fora totalof277 days..Morethanone typeofweathercanbc presentatthesame time.

Althoughthe weatherObservationsatemade atthesurface,theeffectsoftheweathermay occur
atdifferentaltitude,s.IfprecipitationisOccurringwithoutTCU orthunuer,itisgenerallyalow-ievel
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event (below 2 kin). ACSL clouds a_ middle-- or possibly upper-level features from about 2--6 krn.
Thunder and TCU are associated with convective activity, and each can cause strong wind shear up
to the tropopause or about 12 km.

The statistics for the single weather classifications are computed by dividing all the MDCRS
reports local to Denver into two sets for each weather classification: the set of MDCRS measure-

ments taken during times when a given type of weather exists and the set of MDCRS measurements

takenoutsidethetimeswhen agiventypoofweatherexists.Note thatpossiblealtitudelimitson the

weatherinquestionarenotused individingtheMDCRS intothesetwo sets.The standardperfor-
mance statisticsarecomputed forthesetwo sets.The performanceisalsocomputed fortimeswhen
thereareboththunderand toweringcumulus and fortimeswhen thereareboththunderand preci-

pitation.In these two cases the MDCRS are divided into two sets: the set of MDCRS measurements
taken when both types of weather exist and the set of MDCRS measurements taken when neither

weather type exists. The MDCRS measurements taken when only one of the weather types exist arc
not used inthesecases.

The statisticsofprimaryimportancearethestatisticsforthegeneralcase(all)and thestatistics

foragivenweatherclassification.The statisticsforthe"no weather"case,forexample,no precipita-
tion,areincludedforcompleteness.The comparisonoftheRMS errorand 90thpercentileerrorfor

thegeneralcasevs.thesestatisticsfora givenweathercaseshows whetherornottheweathertype
hasa significantimpacton thewind errorsandwhetherornotitmay be ausefulreal-timediscrimi-
nateofexpectederrors.Becausethenumber ofME_RS ineachweatherclassificationisrelatively
small,the"no weather"datasetsarenearlythesame asthefulldataset,and thusthestatisticsfor

the"no weather"casesareveryclosetothegeneralcase.Forthisreason,the"no weather"statistics

arenotparticularlyuseful.

The resultsforeachoftheweatherclassifications,alongwithresultsfortheentiredataset,gxc

giveninTableI0.Foreachweatherclassification,thedatasetispartitionedintotwo sets:datacol-
lectedduringthetimeofthegivenweatherand datacollectedoutsidethetimeofthegivenweather.
BecausetheMDCRS reportsareintheDenver area,many oftheaircraftaredescendingtoorascend-

ingfrom theDenver airport,sotheaircraftaregenerallyatloweraltitudesthaninthegeneralcase.
Thisresultsinloweraveragewind speed,which reducesthemagnitudeoftheerrors.Statisticsfor

wind speedand theTW estimateoftheRMS vectoren'orarealsoprovidedinTable10.An increase

inwind speedisassociatedwithan increaseinwind fielderrors,a_isan increaseintheTW _stimate
ofthevectorerrox.These two influenceson themagnitudeofthevectorerrorsareincludedtohelp

discernwhethera changeinwind fieldaccuracyfora givenweatherclassificationcan be explained

by other,more readilyavailablefactors.

A synopsisoftheresultsfollows:

1.-A!tocumulus(standing)lenticularis(ACSL) isassociatedwith a modest decreasein

thevectorerrors,an increasein wind speeds,and no significantchange in theT ,¢"

estimateof theRMS vectorerror.The decreaseinerrorsisin oppositionto theex-

pected increasein errorsdue to the increasein wind speed. ACSL is a signal
associatedwitha moderatedecreaseinwind fielderrors.

The benefitoftheadditionofrecentMDCRS toRUC inwind fieldaccuracy

is about the same as in the general case.
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Table 10.
Performance In Different Types of Weather

The basic weather categories are as follows: All reports, altocumulus
(standing) lenticularis (ACSL), precipitation, towering cumulus (TCU), and

thunder,Valuesare inmls.

number RUO TW RUC TW wind wind TW o

Weather type MDCRS RMS RMS 90% 9(P/o spd std RMS

All 216.1K 6.14 4.14 9.22 6.09 10,61 8,02 2.78

ACSL 2.4K 5.79 3.85 8.87 5.78 14.24 10.29 2.84
no ACSL 213.6K 6.15 4.15 9.;).2 6.10 10.57 7.98 2.79

Precipitation 12.6K 7.07 4.73 10.69 7.35 11.37 8.30 2.81
no Precip 203.4K 6.08 4.10 9.12 6.01 10.56 8.00 2.79

TCU 58.7K 6.27 4.22 9.62 6.48 8.74 5.59 2.56
no TCU 157.4K 6.09 4.11 9.07 5.95 11.31 8.65 2.86

Thunder 14.6K 6.96 4.65 10.59 7.17 9.13 5.32 2.50
no Thunder 201.5K 6.08 4.10 9.12 6.02 10.72 8.17 2.80

Thunder & TCU 13.6K 6.84 4.64 10.45 7A5 9.04 5.25 2.49
no Thun. orTCU 156.4K 6.08 4.11 9.05 5.94 11.31 8.66 2.86

Thun. & Prec. 3.9K 7.66 5.21 11.57 7.95 9.28 5.14 2.59
no Thun. or Prec 192.8K 6.05 4.08 9.07 5.97 10.64 8.11 2.80

i

2. Precipitation is associated with a distinct increase in the vector errors, a slight increase

in wind speed, and no significant change in the TW estimate of the RMS vector error.

Given that the increase in wind speed is small, precipitation is a signal associated

with significant increases in wind field enors.

The benefit of the addition of recent MDCRS to RUC in wind field accuracy

is slightly greater, by about 0.2 m/s to 0.3 m/s, than in the general case, e.g.

for the 90th percentile: 10.69 rrds vs. 7.35 m/s for an improvemeut of 3.34

m/s vs. the general case improvement of 3.13 m/s in the 90th percentile error.

3. Towering cumulus (TCU) is associated with a small increase in the RMS vector error

and is associated with a larger increase in the 90th percentile vector error. TCU is

alsoassociatedwith a small decrease in wind speed and a small decrease in the TW

estimateof the RMS vectorerror.The effectof theselatertwo influenceslargelycan-

cel,So TCU isa signalassociatedwith a moderate increasein wind fielderrors.

The benefitofthe additionofrecentMDCRS toRUC inwind fieldaccuracy

isabout the same as in the generalcase.

4. Thunder is associatedwith a large increase in the RMS vector errorand in the 90th

percentilevector error.Both the wind speeds and the TW estimate of the RMS vector

error are reduced during times of thunder, and theireffectslargelycancel.Thunder

provides a signalfor significantincreasesin wind fielderrors.
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The benefit of the addition of recent MDCRS to RUC in wind field accuracy

is slightly greater, by about 0.3 m/s, than in the general case.

5. The combination of thunder and towering cum_lus is associated with a large increase
in the vector errors, similar to the increase seen with precipitation. This combination

is also associated with a decrease in wind speed and a decrease in the TW estimate of

the I_MS vector error. The combination of towering cumulus and thunder is a signal

for significant increases in wind field errors, but it is not a better signal than thunder

alone.

The benefit of the addition of recent MDCRS to RUC in wind field accuracy

is very slightly greater, by about 0.1 m/s to 0.2 m/s, than in the general case.

6. The combination of thunder and precipitation is associated with much larger increases

in the vector errors than are seen for the other weather classifications. This combina-

tion is associated with a decrease in wind speed and is associated with a small de-
crease in the TW estimate of the RMS vector error. Of the weather classifications

studied, the combination of thunder and precipitation provides the strongest signal for

significant increases wind field errors.

The benefit of the addition of recent MDCRS to RUC in wind field accuracy

is significantly greater, by about 0.5 m/s, than in the general case.

4.11. Performance vs. Number of MDCRS

One goal of the study is to determine the optimal rate of MDCRS reporting. This is related to

the issue of errors vs. data density, in support of this study, after May 1, 1997 United Airlines in-

creased the rate at which some of their aircraft reported the winds. The increased reporting brings

the number of MI_RS reports per day from about 3500 to about 7800 per day. This gives the oppor-

Umity to run some days varying the number of MDCRS data from less than normal to greater than

normal to determine the variation in performance with the number of MDCRS reports. Rerunning

large numbers of days is time consuming, but some minimum number of days is needed for the re-

suits to be statistically significant. The 10 days, 97150--97159 (May 30 through June 8), are used

as a compromise. These days are used simply because they provide 10 consecutive days while the

United aircraft are providing data at a high rate. Recall that the wind speeds are lower than average

during this period, so these are not particularly challenging days. The results on these 10 days may

represent a conservative estimate of the benefits of the increase in the number of MDCRS reports.

In this section, the statistics are computed by comparing the wind fields to all available MDCRS

reports, even if the matched TW wind is a pass through of RUC.

There are four runs of TW in addition to the original run for each day. Additional runs of RUC

are not available due to the difficulty in rerunning the RUC processing. The MDCRS data for each

day are thinned in a naive way to remove observations from a time-ordered list of the MDCRS re-

ports, and TW is run using the thinned list. Runs with 20, 40, 60, and 80 percent of the MI_RS are

made. A percentage of 45 corresponds to the data rate without the increased United reporting. The

original runs provide the data for 0 percent of the MDCRS (RUC only) and 100 percent of the

MDCRS. The RUC data incorporated with the recent MDCRS by TW uses the full MDCRS data

set. The resulting RMS vector errors and the 90th percentile vector errors are shown in Figure 15.

The improvement in the RMS vector error is substantial up to 40 or 60 percent, and improvement
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continuesup to 100percent.Thereis asubstantialimprovementin the 90th percentile error up to

60 or 80 percent, and the improvement continues up to 100 percent. Since the RUC data in this study

uses the fulI MDCRS data set, the improvement shown here as the number of MDCRS increases is

expected to be an underestimate of the improvement if RUC also used reduced MDCRS data sets.
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Figure 15. TW RM$ and 90th percentile vector error vs. data density. The correspond.
in8 percentage without the increased United Airlines reporting is 45 percent.

4.12. Performance vs. Maximum Allowed Number of MDCRS per Analysis Point

In the TW algorithm, MDCRS near an analysis point are chosen for use in es__mating the wind

at that analysis point. The algorithm estimates the error variance of each MDCRS relative to the anal-

ysis point based on distance and age and then selects the n best MDCRS. The tradeoff is that averag-

ing more data increases the accuracy if the data repres=nt the wind at the analysis location, but gath-

ering more observations for a given location requires searching farther from the location; which

reduces the representativeness of the observations. The value of n for the run of the year's data is

five. This is increased to I0 for the ten days used above. The results comparing the performance of

TW using up to five MDCRS per analysis point and using up to 10 MDCRS per analysis point on

these 10 days are given in Table l 1. No improvement is seen from going from five observations per

grid point to 10 observations per grid point.

4.13. Performance vs. Separation in Time of MDCRS Reports and Wind Fields

The performance results are computed by comparing MDCRS reports to the wind field for the

most recent previous cycle, provided it exists. RUC wind fields are valid on the hour and TW wind

fields are valid at 10 and 40 minutes after the hour. So, the MDCRS observation time can be up to

59 minutes after the time at which the wind field is valid for RUC, and the MDCRS observation time

can be up to 29 minutes after the time at which the wind field is valid for TW. The (MI_RS-wind

field) values are binned every five minutes by time from the last hour, and the resulting RMS and
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Table 11,

Comparison of TW with a Maximum of 5 Observations per Grid Point
and a Maximum of 10 Observations per Grid Point

Results are for 74,344 aircraft reports (66,485 for % speed error and direction

error).Values are in m/s, except for % speed error, which is unitless,
and direction, which is in degrees.

,variable m__J_n+l--S_t_ RMSE 50% 75% 9(P/Q 95%

TW u error --0.52+3.32 3.36 -0.45 1.39 3.30 4.67
TW v error 0.25-j:3.51 3.52 0.33 2.17 4.08 5.46
TW vector error 3.94+_2.86 4.87 3.31 5.11 7.30 9.11
TW % speed error -0,60-j:25.0 25.0 0.2 12.9 27.1 37.4
TW direction error -0.56,j:18.9 18.9 --0.24 6,31 14.72 22.12

TW u error .-0.50,_-,3.34 3.38 -0.44 1.43 3.36 4,73
TW v error 0.24,j:3.54 3.55 0.31 2.19 4.12 5.52
TW vector error 3.97_?..87 4.90 3.34 5.13 7.35 9.14
TW % speed error --0.60-j:25.3 25.3 0.1 13.0 27.3 37.5
TW direction error -0.53:1:18.9 18.9 -0.19 6.39 14.87 22.55

I I i ii,

90th percentile vector errors are shown in Figure 16. The errors in RUC rise slightly over the hour,
from a low of 6.48 to a high of 6.88 m/s for the RMS vector error and from a low of 9.79 m/s to a
high of 10.41 m/s for the 90th percentile vector error. The errors in TW show a similar rise between

cycles, with minima as expected at I0 and 40 minutes after the hour. The maxima and minima of

the TW cycle are 4.98 m/s and 5.34 m/s for the RMS vector error and 7.55 m/s a_ ! 8.21 m/s for the

90th percentile vector error. This indicates that there is some benefit to adding the recent MDCRS
more freq.ently than every 30 minutes and that interpolation in time between RUC forecasts may

be useful, as these modifications might reduce the errors by a couple tenths of a m/s. Wind speed

did not play a factor since the mean wind speed is nearly constant for each time bin.

4.14. Performance vs. Separation in the Vertical of MDCRS Reports and Wind Field
Levels

The performance results are computed using interpolation in the vertical between wind field
levels to the MDCRS altitude. Both RUC and TW are available at pressure levels spaced 50 mb apart,

giving rise to a maximum difference of 25 mb between the MDCRS and the closest wind field level.
The ]_,fl3CRS-wind field values are binned every five mb based on the separation of the MDCRS
from the nearest wind field level. The resulting RMS and 90th percentile vector errors are shown

in Figure 17. The mean wind in each bin is also shown and varies, presumably, because the distribu-
tions of preferred aircraft altitudes gives rise to a relationship between the bins and altitude. While
the errors grow as the separatit,n between MDCRS and wind field level grows, the resulting increase
also closely follows the mean wind profile, making it difficult to separate the two effects. While there
is not a clear benefit showrt to going to a vertical resolution finer than 50 rob, it is expected that there.
is a benefit in sheared environments.
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4.15. Analysis of Sustained Errors

For wind errors to have a deleterious effect on CTAS they must be sustained and well correlated

along the flight path. It would be useful to study this directly by looking at individual paths through

the airspace. However, looking at errors along the track of a single alrcraf-t is problematic due to the

biases in the measurements from a single aircraft (as shown in Table 5). A detailed analysis of errors

along flight paths is left for another study. This study examines the distribution of sustained errors

without examining their correlation. It is implicitly assumed that sustained errors will tend to be cor-

related, but this is not directly shown.

To fred errors which persist over time and space, the hourly 25th percentile vector error, the

hourly 50th percentile error or median, and the hourly 75th percentile error are computed. For exam-

ple, the hourly 25th percentile error is the value X for which 75 percent of all aircraft reports in a

given hour are reporting errors greater than X. The hourly 75th percentile error is the value Y for

which 25 percent of all aircraft in a given hour are reporting errors greater than Y. The data set con-

rains 7023 hours of data.

The distributions of the hourly Nth percentile vector errors are given in Figure 18, Figure 20,

and Figure 22. Each en'or bin labeled n m/s contains errors between n-I m/s and n m/s. Both the

percent of hours with errors of given magnitude and the number of hours are given. C_'nulative

probability plots are also given (Figure 19, Figure 21, and Figure 23). The cumulative 7_robability

plots are especially useful in this context, as they let the reader estimate the number of hours with

errors above any threshold. The exact number of hours for which the sustained vector errors are

above 7 m/s (headwind error of @proximately 1O knots), 10 m/s (headwind error of approximately

14 knots), and 15 m/s (headwind error of approximately 20 knots) are given in table "[_ble 12.

Focussing on Table 12, it is seen that there are 42 hours during the year when 75 l_rcent of the

RUC vector errors are greater than 7 m/s and that the addition of recent MDCRS reduces that number

to five hours. These 42 hours are evenly divided between m'ghtlime and daytime and _,sually occur

as an isolated hour. There are no hours when 75 percent of the RUC vector errors are greater than

I0 m/s. There are many hours during the year when 50 percent of the RUC vector errors are greater
than 7 m/s. The addition of recent MDCRS reduces the number of hours of such errors from 829

to 124. There are 46 hours during the year when 56 percent of the RUC vector errors ark greater than

I Om/s, and the addition of recent MDCRS reduces the number of hours of such errors to one. These

46 hours are evenly divided between v.ighttime and daytime and usually occur as an isolated hour.

Since a 10 m/s vector error corresponds to about a 14 knot headwind error, this is a significant reduc-

tion in sustained errors. Having even 25 percent of the aircraft experiencing large errors is potentially

of operational concern for CTAS if the aircraft are concentrated along one or more flight paths as

Opposed to randomly scattered about. There are 45 hours during the year when 25 percent of the RUC

vector errors are greater than 15 m/s, or a headwind error of approximately 20 knots. The addition

of recent MDCRS reduces this number of hours to eight. These 45 hours are everfly divided between

nighttime and daytime and usually occur as an isolated hour. Over the course of the year, 4160 hours,

or more than half the hours in the study, have 25 percent of the RUC vector errors greater than 7 m/s

or more. This number of hours is reduced to 1913,or by a factor of more that 50 percent, with the

addition of recent MDCRS data.
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4.16. Error Correlation Lengths

The computation of time--of--flight along a path requires computing a numerical integral. Th"

path is broken into small segments, and the time--of-flight for each segment is computed. Then the
times are summed to get the time-of-flight for the entire path. Each segment's time-of-flight has
an error due to incorrect winds. Time-of-flight errors, which arise from correlated wind errors, will
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tend to be of th_ same sign, and when sur,_ned, these errors accumulate. Time--of-flight errors that

arise from wind errors that are not correlated will often vary in sign, and when summed, these errors

tend tocancel. Assuming the correlation in the wind errors decays exponentially, the correlation

length of the error is the distance over which the correlation in the wind errors drops to a value of

I/e. All else being equal, the wind field with the shorter correlation length will lead to more accurate

time-of-flight estimates.
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The error correlation length is a very important parameter, along with some measure of average

error, in perforraing simulations of time-o/!-flight calculation accuracy. Often the wind error is set -
to a constant value, perhaps the RMS error for an on-average scenario or 90th percentile error for

a worst-case scenario. Setting th_ _,ind error to a constant is equivalent to setting the error correla- -

tion length to infinity, which allows no cancelation of errors. In realits,, errors do cancel t,_ some de-
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Table 12.

Nurnbei vf Hours with Hourly Nth Percentile Vector Errors
Above Given Thresholds
Results are for 7023 Hours.

variable , , .>7m/s p10 m/s >15 mls

RUC 25th percentile 42 0 O
TW 25th percentile 5 0 0
RUC 50th percentile 829 46 0
TW 50th percentile 124 1 0
RUC 75th percentile 4160 834 45
TW 75th percentile 1913 203 8

glee, and this can be modeled by using a wind error model that gives wind errors with the desired
mean error, RMS error, and correlation length.

The error correlation lengths are influenced by data density and the amount of data averaging
or smoothing in the data assimilation. For numerical models, the model physics plays an important
role. For TW, which uses RUC in forming an initial estimate, the error conclation lengths inherited

from RUC also play an important role. Large error correlation lengths can arise when the error in

a given observation is spread over a large region. In TW, the spread of a given observation is fled
to the local data density: in regions with numerous observations each observation influences a small-

er region. Large error correlation lengths tend to arise in wind fields generated by processes that
cause a region of grid point values to be correlated, such as forcing the wind and other values to strict-
ly follow equations of large-scale physics, in which case an error becomes a regional bias. Shorter
correlation lengths can arise from analyses where adjacent grid point values are more nearly inde ....................

pendent (This approach can lead to other problems from the point of view of numerical models; how-

ever, these problems are not a concern to ATM DSTs.)

To estimate the correlation of errors as a function of separation distance, the aircraft are paired .......

in much the same way as is done in the MDCRS accuracy study above. However, instead of requiring m

that the pair of aircraft be very close together in all three dimensions, the pair are required to be close
together in only two dimensions. The data are then binned by the third dimension. To study the error
correlation vs. horizontal separation, the lVlDCRS are paired so that both aircraft are at nearly the
same altitude and time. The pairs are then sorted into bins containing pairs whose horizontal separa-
tion is a multiple of 20 km. The correlation among the wind field errors in each bin is then computed;
bins with small separations have errors which are strongly correlated while bins with large separa-

tions have errors which are only weald), correlated. Correlations are computed independently for

the u and v wind components. Correlations for vertical and temporal separations are computed simi-

larly. The separation and binning criteria are listed in table Table 13.

Table 13.

Separation Limits for the Generation of Correlations

variable ..... = _hoorr, B corr. t corr.

max horizontal,km 1500 20 20 km
max vertical,mb 5 600 5 mb
max temporal,minutes 2 2 2000
binsize 20 km -= 10 mb - 15 minutes
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After computing the correlations, a function of the formf(x)=a.exp(-x/b)+c is fit to the data.
The fit is done using least squares that accounts for the quality of the data. The value of sigma chosen
for each corre',.ation value is 1/sqrt(numb_r of pairs). This later point is important since for large

separations there are many fewer samples, and the resulting correlation values are noticeably noisier.
The x coordinate ischosen not to be the centerof the bin but is chosen to be themean of the

separationsforthepairsinthebin.For most binsthemean oftheseparationsinthebin isvery nearly

thecenterofthebin,but forthezerobinthe mean oftheseparationsinthebin isabout halfthewidth

of the firstbin.Using an x value of zerofor the zerobin causesthe fitto undershootf(0),which is

an importantvalue.Figure 24 through Figure35 and Table 14 through Table 16 show theresultsof

fitfmgf(x)=a.exp(-x/b)+c to the correlations at specified separation distances for separations in the

horizontal, vertical, and temporal. The exponential decay fits the data very well for RUC and TW

for horizontal separations and also fits fairly well for TW for vertical separations. The fit to the RUC

error correlations vs. vertical separations is not as good. The RUC data for temporal separations

show a distinct hm'monic signal superimposed on the exponential decay. A function of the form

.ff,x)-a.exp(-x/b)+c+d.cos(2_(x-e)l.t) is fit in addition to the simple exponential decay for the

temporal correlations, and the results arc in Figure 36 and Figure 37 and in Table 17.

The primary parameter desired in this analysis is b, the correlation length for wind field errors.

The correlation length is the distance at which the exponential decay portion of the error correlation

drops to 1/e. The parameter c accounts for correlations which are constant over all separations, and

if c is not nearly zero, it plays an important role in the correlation of errors. If the errors in RUC and

TW are known perfectly, f(0) would be exactly one; errors in precisely the same location are equal

and hence perfectly correlated. However, the values used to estimate errors (MDCRS-modeled

wind) have errors due to errors in MDCRS. Also, this analysis considers the pairs to have separations

in only one dimension. However, the remaining separations, while small, are not zero and they add
additional errors, lust as noted earlier, the more accurate the modeled wind field, the greater the ad-

justment to account for these errors; the value a+c-f(0) accounts for these errors.

The value f(0) is related to the variance of the errors in the modeled winds and the variance in

the errors in the MDCR$, where the errors in the MDCRS include the small-scale winds captured

due to the small aircraft separations which arc treated as being zero. The relationship is given in

equation (9). The termf(0)/(/-f(0)) is sensitive to errors in the estimation off(0), especially for val-

ues off(0) that are near one. Solving for either error variance term also relies on the estirnatkm of

the other error variance term. For these reasons, a direct measurement of the variance in the model

errors is preferred. Assuming aircraft errors and model errors are independent, equation (9) can be

rearranged, with some work, to give equation (10), which relates the variance in the model errors

with the variance of the values (MDCRS-model), which are directly measured.

vat(model errors)/var(MDCRS errors) -f(0)/(1-f(0)) _9)

var(model errors) -f(O).var(MDCRS-model) (10)

The correlationinerrors,afteraccountingfortheerrorsintheMDCRS and theerr6rsfrointhe

small separationsthataretreatedasbeing zero,isthen

f(x)- (]-c).exp(-x/b) + c (11)
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for separations in one dimension. Note that if c is not nearly z_.ro, b alone does not give a good mea-
sure of how fast the correlation gets small.

In actual practice, CTAS computes time-of-flight along trajectories that exist over some time

period and extend over some horizontal distance and, generally, extend over some vertical distance
as well. Because of this, the errors will decorrelate as a function of all three separations. A three-di-

mensional fit to the data is not done, but the expected result is that the errors in the three dimensions

are not strongly correlated, and the product of the three correlation functions provides a good

approximation to the actual correlation function of all three separation variables. Conflict detection

and resolution require time--of-flight for trajectories over time periods of 10 minutes to 20 minutes,

or about 120 km to 240 km at a flight speed of 200 m/s (about 400 knots). Calculation of metering

requires time-of-flight over time periods of 20 minutes to 40 minutes. Flights descend from cruise

at approximately 300 mb to the TRACON at about 500 rob. Following the discussions of the correla-

tion lengths in each individual dimension, results for 4 three--dimensional trajectories are given: lev-

el flight of l0 minutes, descending flight of l0 minutes, level flight of 20 minutes, and descenaing

flight of 20 minutes.

As seen in Figure 24 through Figure 27, the fits of the exponential decay to the correlations as

a function of horizontal separation are quite good. The associated parameters are given in Table 14.

The correlation lengths for RUC are 311 km for u and 363 km for v. The addition of recent MDCRS
data reduces these values to 231 km for u and 241 km for v. The reductions in the correlation length

are substantial, averaging about 100 kin, and the error correlation lengths for TW are approximately

the length over which CTAS computes metering. As expected, the increased accuracy of TW is evi-

dent in the lower value off(0).

As seen in Figure 30 and Figure 31, the fits of the exponential decay to the correlations as a

function of vertical separation are fairly good for the TW data, although the data are not as clean

as for the horizontal separations. The fits of the exponential decay to the RUC data are not as good

(Figure 28 and Figure 29). In particular, the data for the v component of RUC are roughly linear in

the range 0-300 mb where the data have the smaller error bars and the resulting fit has little curva-

ture, i.e., a long correlation length. The parameters associated with the fits are given in Table 15.

The correlation lengths for RUC are 153 mb for u and 273 mb for v. The addition of recent MDCRS
data reduces these values to 69 mb for u and 66 mb for v. These lengths are in the range of what is

operationally significant for CTAS, with the error correlation lengths for TW being much less than

the vertical distance over which CTAS computes time of flight. Again, the increased accuracy of

TW is evident in the lower value off(0).

As seen in Figure 32 through Figure 35, the fits of the exponential decay to the correlations as

a function of temporal separation are quite good for the TW data. The fits of the exponential decay

to the RUC data are good, roughly in the range of 0--400 minutes, which covers the time domatu of

interest for CTAS. After this range, a harmonic signal is seen in the RUC data. The parameters

associated with the fits are givc_n in Ta.._ 16. The correlation lengths for RUC are 156 minutes for

u and 284 minutes for v. Unlike in tae vertical separation case, the longer correlation length for the

RUC v component does not seem to 0¢ due to a poor fit of an exponential decay model. The addition
of recent MDCRS data reduced these values to 32 minutes for u and 43 minutes for v. CTAS com,

putes trajectories on time scales up tO 40 minutes, so this reduction is also operationally Significant.

The increased accuracy of _ is evident in the lower value ofj_0), although f(0) is larger than in

the other cases_
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Table 14,

Fit Parameters for Error Correlation vs. Horizontal Separation

yarleb!e RUC u RUC v TW u TW v

a 0.75 0.91 .48 .58
b (kin) 311 363 231 241
c 0.05 -.06 .07 -.02
_0) 0.60 0.85 0.54 0.56

Given the harmonic signalevidentintheRUC correlationasa functionoframporal separation

data,a functionof the form J(x)-a.exp(-x/b)+c+d.cos(2st(x-e)/./)isfitto the RUC and TW data

(Figure36,Figure 39,and Table 17).While theharmonic signalismost evidentatgreatertemporal

separationsthanaxeofinterestforCTAS, theresultingfitisslightlybettereven atshortertime scales

and shouldgiveslightlybetterestimatesoftheRUC temporal correlationlength.The harmonic sig-

nalislikelydue tothe diurnalcycle.However, thepcriodfisnot 1440 minutes (24 hours);although

thefirstpeak intheRUC dataisatabout 1400 minutes.This may be due tonot fittingan entirecycle -
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Table 15.
Fit Parameters for Error Correlation vs. Pressure Separation

var!n_hle RUC u RUC v TW u TW v

a 0.96 1.25 0.55 0.53
b (mlo) ........................ 153 273 68.7 66.0
c -.16 -.41 -.01 0.00
f(O) 0.81 0.84 0.54 0.53

in the data. This new function provides a slight reduction in the RUC temporal correlation lengths
to 141 minutes for the u component and 254 minutes for the v component; the TW temporal correla-
tion lengtbs are largely unchanged.

The results in Table 18 show correlations for different nominal trajectories that correspond to

conflict calculations performed by CTAS. The correlation ofRuc u and v errors for horizontal sepa-

rations (Ah) of 120 km are the same despite the fact that u and v have rather different values for b.
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Table16.
Fit Parameters for Error Correlation vs. Temporal Separation

variable RUC u _ RUC v TW u TW.x

a 0.76 0.79 0.69 0.67
b (minutes) 156 284 32.1 42.6
c 0.14 0.10 0.08 0.05
_0) 0.90 0.90 0.77 0.72

They arealsothe same fora horizontalseparationof 240 kin.This isdue tothefactthat120 km and

240 km arcrelativelysmall compared tothecorresponding correlationlengthsand due tothediffer-

ingvaluesof c.The TW valuesof b forhorizontalseparationsare somewhat smallerthan forRUC,

and the correlationsforTW errorsare about 0.10 lessthan forthe corresponding RUC errors.The

RUC correlationsforthe nominal separationsinthe verticalare roughly thesame despitethe mis-

match inb forthe two wind components due to themismatch inthe parameter c.Since thevertical

separations100 mb and 200 mb are relativelylargecompared to the corresponding correlation
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Table 17.
Fit Parameters for Error Correlation vs. Temporal Separation

Using Six Parameters

variable RUC u RUC v TW u TW v

a 0.70 0.86 0.70 0.69
b (minutes) 141 254 32 38
c 0.14 0.10 0.08 0.04
d 0.06 0.05 0.01 .03
e (minutes) 97 447 204 208
f (minutes) 1275 935 626 1033
_0) 0.90 0.91 0.77 0.74

lengths, the decrease in the correlation of errors is much greater for the nominal vertical separations
than for the other dimensions. The decrease in the correlation of TW errors for vertical separations

is much greater than for RUC. The correlations for RUC errors at the nominal temporal separations

areagainnearly thesame,0.66vs. 0.68, and0.44vs. 0.46,despitethelargelydifferentvaluesofb
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due to the fact that 10 or 20 minutes is very smallrelative to the corresponding correlation lengths.

The RUC errors are nearly completely correlated for a separation up to 20 minutes.

For a flight in the cruise phase, both the horizontal and temporal correlations apply jointly. For
a descending or ascending flight, all three correlations apply. The error correlation is assm_ed to be

the product of the two or three individual error correlations that apply. In level flight, the addition
of the exlza MDCRS reduces the error correlation by about 0.20, or by I/3 for a IO--minute flight

segment and by I/2 for a 20--minute flight segment. The con'elations are much smaller for both RUC

and TW for trajectories that are descending (or ascending). For a 10-minute descending flight seg-

ment, the RUC errors are moderately correlated while the TW errors are only slightly correlated.

For a 20--minute descending flight segment, the RUC errors are slightly correlated while the TW

errors are essentially uncorrelated.

Table 18.

Correlation of Errors for Nominal Separations Using Equation (11)

The Ah, Ap, and At columns are for separations in one dimension only.
The next two columns are for level flight and for descending flight.

yarlable Ah:120 km A¢=:100 mb At:10 min level desoendin_o

RUC u 0.70 0.44 0.95 0.66 0.29
RUC v 0.70 0.57 0.97 0.68 0.39
TW u 0.62 0.23 0.75 0.47 0.11
TW v 0.60 0.22 0.80 0.48 0.11

variable Ah-940 km Ao---200 mb At,,_O rain level desoendina

RUC u 0.49 0.15 0.90 0.44 0.07
RUC v 0.49 0.27 0.94 0.46 0.12
TW u 0.40 0.05 0.57 0.23 0.01
TW v 0.36 0.05 0.64 0,23 0.01

The RMS errorsinthemodeled winds can be estimatedusingequation (I0),along with theesti-

mates forf(0)and the RMS errorvaluesfrom tableTable 8 (which areuncorrectedforMDCRS er-

rors).The resultingerrorestimatesarethuscorrectedfortheIVIDCRS errors.The model RMS errors

are estimatedfor the valuescff(0)calculatedforhorizontalseparations,verticalseparations,and

temporal separations,and they are given in Table 19. Only theresultsfor the threeparameter fits

are shown; the resultsforthe sixparameter fitsarevery nearlyequal to theresultsfrom the con'e-

spending threeparameter fits.The estimatesof theRMS errorsarevery closetothcsegiven earlier

(RMSE 2 inTable 9 and Table 19).The value RMSE 2 ischosen forinclusionhere sinceitiscom-

puted using the same separationlimitsand thusisan independent estimateofthesame quantity.The

estimatesof the RUC RMS errorsare very closeto each other,spanning a range of 6.12--6.39m/s

for thevectorerror.The estimatesof theTW RMS errorarefairlyclosetogether,spanning a range

of 3.79--4.47m/s forthe vectorerror.
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Table 19.

Comparison of 60 km RUC and 10 km TW
After Correction for MDCRS Errors Using Equation (10)

RMSE raw and RMSE 2 are from Table 9, RMSE h, RMSE v, and RMSE t are

from applying equation (10) using the f(0) values for horizontal, vertical, and
temporal separation, respectively. Only the three parameter fits are used.

Values are in m/s.

variable RMSE raw RMSE 2 RMSE h RMSE v RMSE t

TW u error 3.63 3.08 2.67 2.67 3.18
TW v error 3.69 3.09 2.76 2.69 3.14
TW vectorerror 5.18 4.37 3.84 3.79 4.47

RUC u error 4.62 4.20 4.14 4.15 4.39
RUC v error 4.91 4.48 4.53 4.50 4.65
RUC vector error 6.74 6.14 6.14 6.12 6.39
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5. CONCLUSIONS

5.1. Baseline Performance and Benefits from Adding MDCRS to RUC

Computed over the entire one-year data set, the RMS vector difference and median vector dif-
ference between RUC and the MDCRS reports is 6.74 m/s and 4.99 m/s, respectively. Incorporating
recent MDCRS via the ITWS TW algo_thrn reduces these values to 5.18 m/s and 3.64 m/s, respec-

tively. Correcting the RMS values for the errorz in the MDCRS measurements gives estimates for
the RUC and TW RMS vector errors of 6.12 m/s - 6.39 m/s and 3.79 m/s - 4.47 m/s, respectively.

Given that vector errors of 7 m/s - 10 m/s (approximately 10 knots - 15 knots of headwind error)

are significant to CTAS, the addition of recent MDCRS via the TW algorithm provides a significant

improvement in the on-average wind field accuracy.

Perhaps more important than the on--average performance is the distribution of large errors.
This is addressed in part by examining the 90th percentile vector errors. The 90th percen_e RUC
and TW vector differences with MDCRS are 10.18 m/s and 7.85 m/s, respectively. These values can-
not be corrected for MDCRS errors as done with the RMS errors. But the actual 90th percentile wind

field errors are expected to be somewhat smaller. The addition of the recent MDCRS reports to the
RUC wind field is seen to significantly reduce the magnitude of the 90th percentile vector errors.
The distribution of large errors is also examined via a cumulative probability plot. From this plot
it is seen that 28 tmrcent of the RUC vector errors are greater than 7 m/s, and this is reduced to 14

percent by the addition of the recent MDCRS data. It is seen that 11 percent of the RUC vector errors
are greater than 10 m/s, and this is reduced to four percent by the addition of the recent MDCRS data.

Large errors are especially detrimental to CTAS ff they are sustained over a large portion of the
grid and over a long period of time. As an initial investigation of this issue, the 25th percentile, 50th
percentile, and 75th percentile errors are computed on an hourly basis on the one-year data set. The
results for the 50th percentile hourly vector error show that out of the 7023 hours in the data set there
ate 829 hours when the hourly median RUC wind vector error is 7 m/s or more. This means that if

CTAS were operating during these hours, half of the wind values that CTAS was using have vector ....
errors of 7 m/s or more. Adding recent MDCRS data to RUC reduces this number of hours to 124.
There are 46 hours in the data set when the hourly median RUC wind vector error is 10 m/s or more,

and adding recent MDCRS reduces this number of hours to 1. The 2flth percentile hourly RUC vector
error is greater than 7 m/s for 42 hours (i.e., there are 42 hours when 75 percent of the MDCRS are
reporting winds that differ from RUC by 7 m/s or more), and the addition of recent MDCRS reports
reduces this to 5 hours. The 75th percentile RUC vector error is greater than 15 m/s for 45 hours (i.e.,

there are 45 hours when 25 percent of the MDCRS are reporting winds that differ from RUC by 15
m./s or more), and the addition of recent MDCRS reduces this to 8 hours. If these very large errors

are concentrated along one or more flight paths, they may represent a serious problem for en route
DSTs that generate clearance advisories. The addition of recent MDCRS data to the RUC wind fields
provides a very large reduction in large sustained errors.

Another factor in whether or not wind field errors are de_'imental to CTAS is their correlation.

In computing aircraft time-of-flight along a trajectory, errors that are highly cerrelated tend to add
together when computing time-of-flight, and errors that ate not highiycorrelated _end to cancel.
All else being equal, the wind field with the least correlation among errors will provide the smallest

trajectory errors. Examining the correlation of errors for level flight over 20 minutes at 400 knots
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showsthat errors in the RUC winds have correlation coefficients of approximately 0.45, and the

addition of recent MDCRS reduces these coefficients to 0.23. The correlation of errors for a descend-

ing flight over 10 minutes at 400 knots shows that errors in the RUC winds have correlation coeffi-
clents in the range of 0.29 - 0.39, and the addition of recent MIXERS reduces these coefficients to
O.11. Quantifying the effects of the differing error correlations on trajectories is outside the scope
of this study.

Umted Airlines increased the frequency of their MDCRS reports from May through August of

1997. This allows the study of TW wind field errors vs. number of MDCRS reports, where the num-

ber of MDCRS reports is varied from less than the current normal to greater than the current normal.

Ten days were chosen for this study. The results show that relative to the current normal level of
MDCRS, the extra MDCRS reports reduce the TW RMS vector error by about 0.3 m/s and reduce
the TW 90th percentile vector error by about 0.5 m/s. This is considered to be a significant improve-
ment.

$.2, Factors Useful in Real-Time Estimation of Error Magnitude

The errors in both the RUC wind fields and the TW wind fields are seen to increase with increas-

ing wind speed,inpartdue toan underestimationofwind speed which increaseswithincreasing

wind speed.The relationshipbetween themagnitude ofthewind errorand wind speedisseenby
computingwind fielderrorsfordifferentwind speedsand alsoby comparingtheerrorscomputed

by month withthemonthlymean wind speed.The TW system,aspartofitswind fieldestimation,
producesan estimateof theerrorvarianceforeach estimateof thewind.A relationshipisshown
to exist between the magnitude of the actual enx)rs in the TW wind field and the TW estinmtes of

the error variance. This relationship is seen by plotting the RMS vector error vs. TW estimate of the

RMS vector error. It is also seen by comparing the errors computed by altitude with the mean wind
at each altitude and the TW estimate of the RMS vector error at each altitude. The TW vector errors

follow the trends in the TW estimates of the RMS vector error more closely than the trends in the

wind speed in this comparison.

Different types of weather are also seen to influence wind field accuracy. Altocumulus lenticu-
laris, indicative of mountain waves, is associated with a decrease in wind field errors while precipita-
tion, towering cumulus, and thunder are associated with an increase in wind field errors..Precipita-
tion provides the best signal for increased wind field errors oftbe four simple weather types studied.
The combinations of thunder and towering cumulus and thunder and precipitation are also ex-
amined. The combination of thunder and towering cumulus did not provide a significantly better

signal than thunder alone. The combination of thunder and precipitation provided the best signal of
increased wind field errors of all the weather types and combinations.

$.3. Possible Future Work

This study points to a number of possible improvements to the TW system. The RUC forecast

fields along with the current data can be used to produce short-term forecasts of the winds. Improv-

ing the error models improves the wind field accuracy and strengthens the relationship between the

TW estimate of the errors and the actual errors. The error models used in the TW interpolation can

be upgraded to incorporate wind spee& Other weather factors, such as wind field gradients; which
are related to measurement representativeness can be incoq:_orated into the error models. Also, the
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resultson wind sp_d biasasafunctionofwind speedcanbeusedtoreduceorr_movc thewind speed

bias.The TW analysisorotherITWS algorithms,suchasMIGFA[23] couldbe extendedtoexplicit-

lyincorporateweather,sucha frontalpassage,which isSUSl_Ctedofbeingdifficultforthecurrent
wind prediction/analysissystems.

Furtherstudyof thecurrentdatasetiswarranted.An enalysisof time---of-flighterrorsalong

flightpathswould provideadivothnk toCTAS performance.The datasetcan alsobe usedtodevel-

op algorithmstopredictwind fieldaccuracyinrealtime.Thisstudycouldbe extendedtoinclude
otheron routesensorssuchasDopplerwind profilerdata.A more detailedstudyoftberelationship

betweenweatherphenomena and wind errorscouldbe undertaken.

Therearetwo primaryweaknessesinthecurrentstudy.First,the60 km RUC willbe replaced

by the40 krnRUC inthenearfoture.Second,thoseresultsdo notreadilytranslatetoterminalau-
tomationb_causethecurrentstudydoesnotutilizeDopplerdam and becausethecurrentstudydoes

notanalyzetheperformanceofthe2 km resolutionTW wind field,bothofwhich arevery.important
intheterminalairspace.Those weaknesseswillbc addressedby extendingthisstudytouse the

40 km RUC data,Dopplerdata,and thefullTW systemintheDallas/Ft.Worth (DFW) Centerand

TRACON.
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GLOSSARY

ACLS

ATC

ATM

CTAS

DEN

DST

FMS

FSL

ITWS

METAR

mb

MDCRS

MSL

NASA

NCEP

nmi

NEXRAD

NOAA

NWS

OI

PBL

Qc
RMS

RMSE

Ruc
SAS

TCU

TRACON

TW

Altocumulus (standing) lenticularis

Air Traffic Control

Air Traffic Management

Center TRACON Advisory System

Denver International Airpc_

Decision Support Tools

Flight Management System

Forecast Systems Laborato.,'y

Integrated Terminal Weather System

Aviation Routine Weather Report

millibar

Meteorological Data Collection and Reporting System

mean sea level

National Aeronautical and Space Administration

National Center for Environmental Prediction

nautical mile

NExt generation weather RADar

National Oceanic and Atmospheric Administration

National Weather Service

Optimal Interpolation

Planetary Boundary Layer

Quality Control

Root Mean Square

Root Mean Square Error

Rapid Update Cycle

Statistical Analysis Software

Towering Cumulus

Terminal Radar Approach Control

Terminal Winds

61





REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[io].

[il]

U2]

[131

[14]

[15]

[161

Denery, D. O. H. E_berger, "The C.enter-Tracon Automation System: Simulation and Field

Testing," Proceedings of the advanced Workshop on ATM (ATM 95), sponsored by the Na-
tional Research Council of Italy, Capri Italy; Also published as NASA Technical Memoran-

dum 110366 (1995).

Seagull Technology, Inc., "Center-TRACON Automation System- Description to Support

an Operational Concept Document," 901 I2-03 (1990).

Jardin, M.R., and S.M. Green, "Atmospheric Data Error Analysis for the 1994 CTAS De-

scent Advisor Preliminary Field Test," NASA TM (#TBD), in draft form.

Williams, D.H. and S.M. Green, "Flight Evaluation of the Center/TRACON Automation

System Trajectory Prediction Process," NASA TPA3696, publication pending.

Benjamin, S., K. Brewster, R. Brummer, B. lewett, T. Schlatter, T. Smith andP. Stamus, "An

Isentropic Three-hourly Data Assimilation System using ACARS Aircraft Observations,"

Monthly Weather Review, 119, 888-906 (1991).

Benjamin, S. G., K. J. Bmndage, P. A. Miller, T. L. Smith, G. A. Grell, D. Kim, J. M. Brown,

T. W. Schlatter and L. L. Morone, "The Rapid Update Cycle at NMC," Preprints, Tenth Con-

ference on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc. (1994).

Evans, J. E.: Safely reducing delays due to adverse terminal weather. Pro<:. of the Advanced

Workshop on Air Traffic Management ATM95 (to appear), Capri, Italy, Oct (1995).

Evans, J. E., E. R. Ducot, "'The Integrated Terminal Weather System (ITWS)." Lincoln Lab-

oratory Journal, Vol. 7, No. 2 (1994).

Sankey, D. A.: An Overview of FAA-Sponsored Aviation Weather Research and Develop-

ment, Fifth International Conference on Aviation Weather Systems, Vienna, VA (1993).

Cole, R. E., J. E. Evans, D. A. Rhoda, "Delay Reduction Due to the Integrated Terminal

Weather System (ITWS) Terminal W'mds Product," Seventh Conference on Aviation, Range,

and Aerospace, Long Beach, CA (1997).

Cole, R. E., and F. W. w'flson: The integrated terminal weather system terminal v_inds i_rod-

uct. Lincoln laboratory Journal, Vol. 7, No. 2. (1994).

Cole, R. E., E W. W'dson, "ITWS Gridded Winds Product," Sixih Conference.on Aviation

Weather Systems, Dallas, TX (1995).

Schwartz, B.E. and S.G. Benjamin, "Accuracy of RUC Wind and Aircraft Trajectory Fore-

oasis as Determined from ACARS Observations," report from NOAA/FSL to NASA Ames

Research Center, publication pending (1998).

Brewster, K., S. Benjamin and R. Crawford, "Quality Control of ACARS Meteorological

Observations - a Preliminary Data Survey," Preprints, Third International Conference on

the Aviation Weather System, Anaheim, CA (1989)..

Merritt, M.W., D. Klingle-Wilson, and S.D. Camplx:ll, "Wind Shear Detection with Pencil-

beam Radars," Lincoln Laboratory Journal, Vol. 2, No. 3 (1989).

Crum, T.D. and R.L. Alberty, "The WSR-88D and the WSR--88D Operational Support Fa-

cility," Bull. Amer. Meteor. Soc., Vol. 74, No. 4, 645-653 (1993).

63



[171

[18]

[19]

[20]

[21]

Wilson, F.W. and R.H. Gramzow, "The Redesigned Low Level Wind Shear Alert System,"

Fourth International Conference on the Aviation Weather Systems, Paris (1991).

ASOS Program Office Staff, "Automated Surface Observing System Users Guide-Prelimi-

nary," National Weather Service ASOS Program Office, 84pp. [Available from NWS ASOS

Program Office, Silver Spring, MD 20910] (1991).

Oandin, L.S.,"Objective Analysis of Meteorological Fields," Leningrad, translated by Israel

Program for Scientific Translations, Jerusalem, 1965 (1963).

Daly, R., "Atmospheric Data Analysis," Cambridge University Press, Cambridge (1991).

Armijo, L., "A Theory for the Determination of Wind and Precipitation Velocities with

Doppler Radars," Journal of Atmospheric Sciences, 26, 570-573 (1969).

Luenburger, D.G., Optimization by Vector Space Methods, Wiley, New York (1969)o

Troxel, S., R. L. Delanoy, "Machine Intettigent Approach to Automated Gust Front Detec-

tion for Doppler Weather Radars," SPIE Proceedings - SenMng, Imaging, and Vision for
Control and Guidance of Aerospace Vehicles, Vol. 2220, 182-192, Orlando, FL (1994).

64


